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Abstract—This paper presents an k-partition, graph theo-
retic approach to perceptual organization. Principal results
include a generalization of the bi-partition normalized cut
to a k-partition measure, and a derivation of a sub-optimal,
polynomial time solution to the NP-hard k-partition problem.
The solution is obtained by first relaxing to an eigenvalue
problem, followed by a heuristic procedure to enforce feasi-
ble solutions. This approach is a departure from the standard
k-partitioning graph literature in that the partition measure
used is non-quadratic, and is a departure from image seg-
mentation literature in that k-partitioning is used in place of
a recursive bi-partition. We apply this approach to image seg-
mentation of infra-red (IR) images, and show representative
segmentation results. Initial results show promise for further
investigation.

1 INTRODUCTION

Image segmentation is the process of extracting coherent re-
gions or object hypotheses from images. This process is dif-
ficult since arbitrary lighting and backgrounds can clutter a
scene, resulting in incorrect hypotheses. Segmentation sys-
tems often compensate for this variability by coupling bot-
tom up processing, which creates salient regions and focuses
computation, with top down knowledge based processing to
overcome noise [1–3]. In this paper, we focus on a bottom
up approach based on perceptual organization, which can be
integrated into such a coupled system.

Perceptual organization refers to the ability of computer vi-
sion systems to organize features based on human vision,
or Gestaltic, criteria. This sort of organization permits the
formation of object hypotheses with minimal domain knowl-
edge, and therefore minimal restrictions [4]. One efficient
representation for perceptual organization is using graph the-
ory [4, 5]. Images are abstracted to a graph representa-
tion, where graph nodes correspond to image locations, and
weighted graph edges encode measures of Gestaltic simi-

larity between nodes. This abstraction transforms the im-
age segmentation problem into graph partitioning, which at-
tempts to group nodes such that some partitioning measure or
cut is maximized within each group and minimized between
groups.

Approaches to graph partitioning can be classified according
to partitioning measure and partitioning process. First, parti-
tioning measures explored in image segmentation include the
min cut, average cut, and normalized cut [6–8]. Analysis has
shown that given 2-ary features, the average cut and normal-
ized cut produce equivalent image segmentations which are
superior to the min cut [9]. This analysis motivates further
investigation into the normalized cut. Second, a partitioning
process is generally categorized as a recursive bi-partition or
k-partition [10]. A recursive bi-partition divides a graph into
two groups, then recursively divides each group until k par-
titions are obtained [3, 5, 7]. A k-partition attempts to divide
a graph into k groups simultaneously. Image segmentation
has been historically dominated by the recursive bi-partition,
however as noted in [11], recursive bi-partitioning suffers
from a lack of global perspective which could lead to sub-
optimal segmentation with respect to the k-partition.

In this paper, we present a k-partition graph theoretic ap-
proach to perceptual organization. We generalize the bi-
partition normalized cut to a k-partition measure, and we
derive a sub-optimal, polynomial time solution to the NP-
hard k-partition problem. The solution is obtained by first
relaxing to an eigenvalue problem, followed by a heuristic
procedure to enforce feasible solutions. This approach is a
departure from the standard k-partitioning graph literature
in that the partition measure used is non-quadratic [12–15],
and is a departure from image segmentation literature in
that k-partitioning is used in place of a recursive bi-partition
[3, 5, 7, 8]. We conclude with initial results from applying
this approach to the segmentation of potential targets in IR
images.

2 K-PARTITIONING A GRAPH

Image segmentation methods based on graph partitioning
consist of formulating a weighted graph from the image and
partitioning the graph so that some measure of similarity de-
fined over partitions is minimized. Such minimization prob-
lems are in general NP-hard and, as a result, approximation



schemes are necessary.

Our approach has the following overall structure: Formulate
a convex lower bound problem and compute a suboptimal
solution in polynomial-time using semidefinite programming
(SDP) [12, 14, 16, 17]. We then define a lower bound using
eigenvalue-based bounds, which are special cases of SDP that
admit a non-iterative linear algebraic algorithm.

2.1 Notations

All vectors and matrices considered are real. 1k is a a col-
umn vector of length k whose elements are all equal to one.
ek is a column vector whose elements are all zeros except the
kth entry which is 1. The transpose of A is denoted by A′.
The element by element Hadamard product of two matrices
A and B is denoted by A•B. A ≥ B denotes element-wise
inequality. A�B denotes the requirement that A−B is pos-
itive semidefinite. Strict inequalities are denoted by A > B
and A � B. If A � 0, then A has a positive square root
which is denoted by A1/2, i.e A1/2 � 0 and A = A1/2A1/2.
The element-wise positive square root of A ≥ 0 is denoted
by

√
A. A⊥ an inner matrix whose columns span the null

space of A′. A \ B denotes the set difference such that
A \B = {x|x ∈ A,x /∈ B}. The trace of a square matrix
is denoted by trace(·); while the maximum eigenvalue of a
symmetric matrix is denoted by λmax (·). The diag(·) opera-
tor acts on vectors to give diagonal matrices in the following
way: (i, i)th element of diag(v) is the ith element of v.

2.2 Problem Overview

Let G = (V,W ) be a graph for which V is an ordered finite
set of vertices or nodes with |V |= N elements. Let W = W ′

be the size N ×N edge weighting matrix, such that W ≥
0, whose elements Wij correspond to the similarity weight
between the ith and jth nodes. The matrices

D = diag(d) = diag(W1N ) and L = D −W

will play important roles in this paper. The diagonal elements
of D are the sums of the rows of W , and we assume D � 0.
The matrix L is known as the Laplacian, where L1N = 0,
det(L) = 0, and L� 0 .

A k-partition of G is an N×K membership matrix X , which
assigns each v ∈ V to one partition Vi such that for all 1 ≤
i ≤ k, Vi 6= ∅, V1 ∪ V2 ∪ · · · ∪ Vk = V , and Vi ∩ Vj = ∅ for
i 6= j. An optimal k-partition Xopt minimizes a similarity
measure N(X) over all X satistfying certain conditions. The
goal of this analysis is to define an optimal k-partition Xopt

of G.

2.3 Similarity measures

We are interested in separating the vertices in V into k dis-
joint classes according to some measure of similarity. Define:

Vp = {(Ai)
k
i=1 :Ai 6= ∅, Ai ∩Aj = ∅ for all i 6= j,

and A1 ∪A2 ∪ · · · ∪Ak = V } (2)

to be the universe of partitions over which similarity mea-
sures are defined. In order to define similarity measures and
perform computations, let us first identify Vp with the follow-
ing subset of a vector space:

Xp = {X ∈ IRN×k :X•X = X, X1k = 1N and

X ′
1N ≥ 1}

(3)

This is a finite set because the constraint X•X = X implies
that every element of X must be either 0 or 1. In addition,
the constraints X ′

1N ≥ 1 (non-empty sets) and X1k = 1N

(disjoint sets) guarantee that the columns are orthogonal and
that one and only one entry of each row is 1. It is easy to
verify that Vp and Xp are in one-to-one onto correspondence.

Normalized cut— Define the functions fp, gp : Xp → IRk×k

as follows:

fp(X) = X ′DX and gp(X) = X ′LX (4)

where D is the diagonal matrix of row sums of W and L is
the Laplacian. Some properties of these functions are given
below:

1. fp is diagonal because D is diagonal, the columns of
X are orthogonal and every element of X is either 0 or
1. Moreover, fp(X) � 0 for any X , a consequence of
D � 0 and the fact that X has full rank.

2. gp(X) � 0, gp(X)1k = 0 and det(gp(X)) = 0 for any
X . These follow from the properties of L and X .

Before defining the measures, let us interpret these functions
in terms of the set of partitions Vp. Fix X ∈ Xp. Let (Ai)

k
i=1

be the corresponding partition of V . The (i, i)th element of
fp(X) is the total connection weight from Ai to V . Notice
that

gp(X) = X ′LX = X ′(D −W )X = fp(X)−X ′WX

So, the (i, i)th element of gp(X) is the total connection
weight from Ai to V \Ai. Therefore, the (i, i)th element
of

fp(X)−1/2gp(X)fp(X)−1/2

is the total connection weight from Ai to V \Ai normalized
by the total connection weight from Ai to V . With this in
mind, we define the normalized cut N0 : Xp → IR as follows:

N0(X) = trace
(
fp(X)−1/2gp(X)fp(X)−1/2

)
(5)



This is clearly a generalization of the normalized cut of Shi
and Malik [7].

Roughly speaking, N0 sees each class Ai in relation to its
complement in V and does not directly use between-class in-
formation as the definition involves only diagonal elements.
The off-diagonal elements of −gp(X) are the total weights
between classes and could be useful in separating the classes.
One way to bring in this between-class information is to de-
fine the maximum eigenvalue measure Nλ : Xp → IR:

Nλ(X) = λmax

(
fp(X)−1/2gp(X)fp(X)−1/2

)
(6)

Interestingly, N0 = Nλ in the 2-cut case (k = 2) which is to
be expected from our interpretations. Mathematically, this is
because one of the eigenvalues of f

−1/2

p gpf
−1/2

p is always
zero.

2.4 Graph Partitioning Problem

We would like to minimize the measure Nλ defined in the
previous section possibly over Xp. However, Xp contains all
k-cuts including some that partition the image into several
small subsets and a large one. The normalized cut measure
was originally defined by Shi and Malik [7] to guard against
such partitions from becoming optimal. A more direct way
is to insist that every subset in a partition be bigger than a
specified size thereby eliminating unrealistic partitions. To
this end, let s0 ∈ IRk be a vector whose entries are all strictly
positive integers that specify the minimum size of each parti-
tion. Assume that the sum of elements of s0 is no larger than
N . Define:

S0 = {s≥ s0 : entries of s are integers and

1k
′s = N} (7)

and, for each s ∈ S0, define the following subset of Xp:

X s
p = {X ∈ IRN×k :X•X = X, X1k = 1N

and X ′
1N = s}

(8)

which is the set of all partitions of X whose components are
of size specified by the components of s. The union of X s

p

over S0 is a more reasonable representative of image segmen-
tation objectives than Xp. We shall therefore formulate graph
partitioning problems on this union.

The goal of the graph partitioning problem is to find a sub-
optimal solution (s ∈ S0,X ∈ X s

p ) such thatNλ(X) < γλ+ε
for any ε > 0, where

γλ = min
s∈S0

min
X∈X s

p

Nλ(X) (9)

It is known that the normalized 2-cut is NP-complete. So,
polynomial-time algorithms for computing γλ cannot be
found (unless P=NP). We are therefore interested in comput-
ing sub-optimal solutions preferably with known quality.

2.5 Eigenvalue-based bounds

The basic idea in semidefinite programming (SDP) relaxation
and its special case considered in this section is to replace the
constraint set X s

p with a larger set containing X s
p . It can be

shown [18] that X s
p in (8) is equivalent to:

X s
p = {X ∈ IRN×k :X ′X = diag(s), X1k = 1N ,

X ′
1N = s and X ≥ 0}

(10)

from which a relaxation is obtained by ignoring the constraint
X ≥ 0.

Define:

X s
relax = {X ∈ IRN×k :X ′X = diag(s),

X1k = 1N and X ′
1N = s}

(11)

which, unlike X s
p , is an infinite set, due to the relaxation.

It can be shown [18] that X ∈ X s
relax

if and only if

X(s) =
[
1N√

N
1N

⊥
][

1 0
0 Z

][ √
s′

√
N√
s
⊥′

]
diag(s)

1/2 (12)

or correspondingly, X(s) = U1UzU
′
sdiag(s)

1/2 for some in-
ner matrix Z.

Using this definition for X s
relax

, a lower bound to the mini-
mization in (9) for a fixed s ∈ S0 is:

inf
γ,Z

γ subject to X ′(γD−L)X � 0,

X = U1UzU
′
sdiag(s)

1/2
, Z ′Z = I

(13)

which is obtained by introducing a new variable γ and using
properties of λmax (·). Removing X and the invertible outer
factors using congruence gives:

γλ
lbd

= inf
γ,Z

γ subject to U ′
zU

′
1 (γD−L)U1Uz � 0

and Z ′Z = I
(14)

Thus, the inner minimization of the lower bound problem in
(9) is equivalent to the above infimization.

Using a Schur complement argument, the positive definite
constraint U ′

zU
′
1 (γD−L)U1Uz � 0 in (14) is equivalent to

the constraint:

Z ′
[
(γ− 1)I +

√
d
⊥′

D−1/2WD−1/2
√

d
⊥

]
Z � 0 (15)

Define:

A = (γ − 1) I +
√

d
⊥′

D−1/2WD−1/2
√

d
⊥

B = D−1/2WD−1/2



The positive definite constraint in (15) holds if Z is any ma-
trix whose range is contained in the eigen subspace associ-
ated with the strictly positive eigenvalues of A. It follows
from a similarity transform argument that if the eigenvalues
of B are 1 = λ1 ≥ λ2 ≥ · · · ≥ λN , then the eigenvalues of
A are (γ − 1) + λ2 ≥ (γ − 1) + λ3 ≥ · · · ≥ (γ − 1) + λN .
For A to have k − 1 strictly positive eigenvalues, the re-
quirement γ > (1− λk) must hold. Therefore, the choice
γ = (1−λk)+ε for some ε > 0, and Z an inner matrix whose
columns are the orthonormal eigenvectors corresponding to
the k-1 strictly positive eigenvalues of A, results in the pair
(γ,Z) being a feasible, sub-optimal solution to (13) and (14).
For a given s ∈ S0, this feasible solution defines an X as in
(12), for which Nλ(X) < (1−λk)+ ε. For a detailed deriva-
tion, please see [18].

2.6 Computational Solution

Following the results in the previous section, a sub-optimal
solution (s ∈ S0,X ∈ X s

relax
) such that Nλ(X) < γλ

lbd
+ ε

given ε > 0, can be calculated as follows.

Algorithm 2.1 (Solution of eigenvalue-based lower bound)
Perform the following computations:

1. Compute largest k eigenvalues of D−1/2WD−1/2

1 = λ1 ≥ λ2 ≥ · · · ≥ λk

and a corresponding orthonormal set of eigenvectors
v1,v2, · · ·,vk.

2. Define

qi = D−1/2vi for i = 1, 2, · · ·, k
and apply Gram-Schmidt orthonormalization procedure
starting with q1.

3. Choose any s ∈ S0 and set

X = M

[√
s
′
/
√

N√
s
⊥′

]
diag(s)

1/2

where M ∈ IRN×k is the inner matrix obtained in the
Gram-Schmidt orthogonalization of Step 2.

Then, γλ
lbd

= 1− λk and, for any ε > 0, the matrix X given
in Step 3 satisfies Nλ(X) < 1−λk + ε.

Note that Step 1 and Step 2 of the algorithm do not involve s.
Hence, γλ

lbd
is independent of s and every X given by Step 3

has the same quality. This is because the relaxed constraint
set, without the cone constraint X ≥ 0, admits all directions.
So, in Step 3, we ought to choose s ∈ S0 with the objective
of enforcing X ≥ 0. We do so by solving the following min-
imization problem for ŝ :

J = min
ŝ≥ Ŝ0

K =−KT

||X(ŝ)•X(ŝ)−X(ŝ)||2 + ||X(ŝ)−||

where

X(ŝ) = M

[√
ŝ′/
√

N

eK(
√

ŝ
⊥′

)

]
diag(ŝ)

1/2

X(ŝ)− is the matrix X(ŝ) with all positive entries set to 0,
|| • || denotes the Frobenius matrix norm, and:

Ŝ0 = {ŝ : ŝ ≥ s0 and 1k
′ŝ = N}

which is a relaxation of S0 defined in (7).

The final result X is formed as in Step 3 of Algorithm 2.1
using the solution s = ŝ to the minimization of J . The ma-
trix X defines a k-partition, where the rows of the solution
can be interpreted as the confidence that a node belongs the
group represented by the corresponding column of X . Due to
the use of relaxed constraints, X is real valued, so the group
membership of the ith node in X is chosen to be j such that
Xij ≥Xil for all 1≤ l ≤ k.

3 IMPLEMENTATION AND RESULTS

Section 2 described a computational engine to perform a si-
multaneous k-way partitioning of a weighted graph. In this
section, we relate the theory of Section 2 to a specific applica-
tion, namely, segmenting objects of interest from background
in IR imagery.

Image segmentation can be considered to be a preliminary
step towards Automatic Target Detection (ATD), the au-
tonomous location of targets in sensor data. When using
infrared and optical sensors, where the sensor data is rep-
resented by an image of the scene under surveillance, the
ATD problem becomes one of forming target-class hypoth-
esis from pixels in the image. Image segmentation is an ef-
fective pre-processing tool to form object hypotheses before a
decision level algorithm is used to determine if each of these
objects is a target of interest. The use of perceptual organiza-
tion ensures that the object hypotheses are formed based on
robust, human vision based criteria.

3.1 Features for grouping

Perceptual organization theory provides a set of heuristics be-
lieved to be used by the human visual system to separate fig-
ure from ground in an image, with little or no prior informa-
tion. These heuristics grew out of the Gestaltic movement
to explain how humans are able to reliably and repeatedly
segment arbitrary images into figure and background. Such
heuristics include: proximity, similarity, closure, symmetry
and continuity [4].

In the context of graph partitioning, perceptual organization
can be used to define features which characterize the relation-
ship between image regions. The relationships are encoded in
the edge weights of the weighted graph.

The weight between two nodes in the graph, or in our partic-



ular case, two points in the image, is calculated as a function
of image properties, or features at the two points. Specifi-
cally, with M features under consideration, the weight Wij

between two pixels, i and j, can be calculated as

Wij = W feature1

ij ×W feature2

ij × ...×W featureM

ij (16)

The weight based on a certain feature is a function of some
measure of similarity, dij , such that,

W featurem

ij = exp

[
−

(dfeaturem

ij )2

σ2

featurem

]
(17)

where, σ2

featurem
, determines the relative strength of the fea-

ture in the perceptual grouping process.

Features explored in this implementation are as follows:

Intensity: dintensity
ij is the difference in the intensity of the

image at pixels i and j.

Proximity: dproximity
ij is the spatial distance between pix-

els i and j.

Texture: dtexture
ij is a measure of the difference in distri-

butions of textons, or primitive texture elements within
a region. As in [19], we calculate the similarity between
two pixels to be the χ2 distance between two texton his-
tograms computed from local regions centered on each
pixel.

Contour: dcontour
ij is calculated using the intervening con-

tour framework [19], where the similarity between the
two pixels is inversely proportional to the strongest con-
tour that separates them.

3.2 Computational Considerations

The computational requirements of the k-way graph parti-
tioning algorithm increase polynomially with image size [20].
Any effort to decrease the computational requirements by
downsampling the image or weight matrix results in small
targets being overlooked, which implies that it is important to
use every pixel on target, and by extension, every pixel in the
image, for grouping.

A possible solution to the computational problems encoun-
tered when dealing with every pixel in a large image is to
develop a grouping hierarchy. We have implemented such a
hierarchy using a bottom up approach where small areas of
the image are partitioned at the lowest level of the hierarchy
using the approach described in Section 2 and these partitions
are then recursively merged at the higher levels. The recur-
sive merge also uses the theory in Section 2 by treating the
partitions as nodes in a graph and using a measure of simi-
larity between partitions as edge weights. We illustrate our
approach using the example shown in Figure 1. For details,
one may refer to [20]. By using a quadrant-based recursive
merging process, this approach is approximately 16L−1 times
faster than a single-step partitioning of the entire image at
once, where L is the number of levels in the hierarchy.

Raw Image

Output Segmentation

Level 1

Level 2

Level 3

. . .
....

....
.

Segmentation
Over−

grouping
hierarchical 

....

. .
..

Quadrant−based

Figure 1. The hierarchical approach for a 3-level hierarchy

3.3 Results

This section shows the results of the following approach: cre-
ating the image graph as defined in Section 3.1, partitioning
the graph using the theory described in Section 2 and then re-
peating these steps using the recursive hierarchy described
in Section 3.2. The images shown here are from the Fort
Carson database [21], downsampled from the original size of
256× 256 to 128× 128. The results are shown with different
colors, each corresponding to a perceptually salient image re-
gion. It should be noted that we currently fix the number of
partitions, k, of a sub-image, at each level of the hierarchy.

Figure 2 shows examples of our approach, with the IR images
under test along the top row and the corresponding segmenta-
tion results along the bottom row. Figure 2 (a) shows a simple
example, where the target of interest is an M113 TOW vehi-
cle, against the backdrop of a grassy region. The result shows
that the three perceptually salient regions of grass, sky and
target are correctly segmented. Figure 2 (b) shows an image
with two targets of interest. The car on the right is clearly
visible while the car on the left bleeds slightly into the back-
ground. Both targets are successfully segmented along with
the correct background partitions between the ground, a hilly
area and the sky. Figure 2 (c) shows an IR image with two
targets of interest, an SUV that is clearly visible and distant
M113 TOW vehicle, along the slope of a hill, that is very hard
to see. The algorithm detects the SUV and partially detects
the M113, along with correctly identifying the horizon. Fig-
ure 2 (d) shows an M113 TOW vehicle against a cluttered
background in the IR image. The segmentation algorithm
correctly segments the target, indicated by the black region
in the result, from background, along with additional clutter.



(a) (b) (c) (d)

Figure 2. (top) A series of images from the Fort Carson IR imagery database (bottom) Segmentation results

4 CONCLUSIONS

This paper has presented the theory and initial results for a
new k-way graph partitioning approach to image segmenta-
tion based on perceptual organization. The results in Figure
2 show that the approach provides good target-background
separation in scenarios with multiple targets, targets of dif-
ferent sizes and cluttered background. In all these cases, the
background is also segmented appropriately.

The results shown in Figure 2 also point out areas that need
further investigation. For instance, in Figures 2(a) and 2(c),
the targets are oversegmented. Such results show the impor-
tance of automatically selecting the appropriate k for parti-
tioning the image. Also, one can see from Figure 2(b) that
the car on the left is only detected partially. Given the fea-
tures we are using, this segmentation is acceptable, since the
IR image shows that the bottom of the car does blend into
the background. However, a human is able to segment the
whole car by making use of human vision cues such as conti-
nuity and familiarity, which implies that target detection may
be improved by introducing additional Gestaltic features. Fi-
nally, Figure 2(d) shows detection of clutter along with the
target. This highlights the need for a coupled top down pro-
cessing to be integrated with bottom up processing to reduce
noise.

In summary, we believe the results shown are promising in the
context of target detection, and conclude from these observa-
tions and results that image segmentation based on percep-
tual organization merits further investigation. Future work in-
cludes a quantitative analysis of this approach vs. current seg-
mentation algorithms and other graph partitioning approaches
to show comparative results, further tests to show robustness

given scene variability, and investigation into methods to au-
tomatically determine an appropriate k.
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