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Abstract—Autonomous rendezvous and docking is necessary
for planned space programs such as DARPA ASTRO, NASA
MSR, ISS assembly and servicing, and other rendezvous and
proximity operations. Estimation of the relative pose between
the host platform and a resident space object is a critical abil-
ity. We present a model-based pose refinement algorithm,
part of a suite of algorithms for vision-based relative pose
estimation and tracking. Algorithms were tested in high-
fidelity simulation and stereo-vision hardware testbed envi-
ronments. Testing indicated that in most cases, the model-
based pose refinement algorithm can handle initial attitude
errors up to about 20 degrees, range errors exceeding 10% of
range, and transverse errors up to about 2% of range. Prelim-
inary point tests with real camera sequences of a 1/24 scale
Magellan satellite model using a simple fixed-gain tracking
filter showed potential tracking performance with mean er-
rors of < 3 degrees and < 2% of range.
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1. INTRODUCTION

Guidance, Navigation and Control (GN&C) technologies for
autonomous rendezvous and docking, formation flying, or
proximity operations of spacecraft or other vehicles require
accurate, up-to-date measurements and estimates of relative
range and attitude while in close formation and during ren-
dezvous or proximity operations.

Active sensors used for relative pose measurement and es-
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timation include laser scanning and ranging sensors such as
LIDAR. These sensors can provide good relative position ac-
curacy at distances of up to several kilometers, as well as rel-
ative orientation cues (based on object shape) at shorter dis-
tances. However, these sensors are typically very expensive
and power-hungry, and often have a small field of regard.

Figure 1. Model-Based Tracking of Magellan 1/24 Scale
Spacecraft over a Real Camera Sequence. Green overlay
shows tracked model pose.

Inexpensive camera sensors, coupled with advanced im-
age processing and tracking algorithms, can provide a cost-
effective and accurate sensing capability to obtain full 6DOF
relative pose information during proximity operations. The
cameras may serve multiple functions, such as providing
easily-interpreted visual cues for human observers and im-
proving situational awareness in supervisory control applica-
tions.

A number of existing image processing algorithms for pose
estimation and tracking utilize fiducial markings on the
tracked object. However, retrofitting an existing satellite with
these fiducial markings is impractical at best. Other pose esti-
mation algorithms use an object surface model representation
to track the object, avoiding the necessity for fiducial mark-
ings while taking advantage of the known structural configu-
ration (including components effectively acting as fiducials).
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This paper describes the results of analysis, implementa-
tion and testing of a component model-based pose estima-
tion module intended for vision-based guidance, navigation
and control applications including automated rendezvous and
docking. A high level block diagram of the model-based
pose refinement and tracking architecture is shown in Fig-
ure 2. The architecture is based on the Iterative-Recursive
Least Squares (IRLS) pose refinement algorithm of Drum-
mond and Cipolla [5].

We have integrated several vision-based algorithms for rela-
tive pose estimation and tracking into a prototype Vision Sys-
tem for Autonomous Rendezvous and Docking (VISARD).
The VISARD algorithms and software were analyzed and
tested using both synthesized camera imagery—based on
various 3D CAD models, including an upper-stage Delta II
Rocket Body—and real camera imagery from a stereo-vision
hardware testbed, using scanned/digitized 1/24-scale Magel-
lan (Figure 1) and 1/72-scale Soyuz orbiter models [20].

2. POSE ESTIMATION OVERVIEW

Pose estimation is the process of estimating the rigid trans-
form that aligns a model frame with a sensor, body, or world
reference frame. Image-based pose and motion estimation
can be broadly classified into model-based and non-model-
based techniques.

Non-model-based techniques do not assume a priori knowl-
edge of the tracked object’s shape, textures, or other visual
attributes, and typically attempt to process an image sequence
to decouple the scene structure from the sensor motion. Ex-
amples from the computer vision community include stereo
based egomotion estimation [15], differential or optic flow
techniques [18], and structure from motion [19].

These methods can be used to solve for optimal camera mo-
tion given continuous image velocity or discrete feature cor-
respondence measurements under epipolar or motion field
constraints. They also allow general object or camera egomo-
tion to be estimated on a frame-to-frame basis without neces-
sarily constructing or maintaining a structural model of the
tracked object.

One challenge faced by many feature-based pose tracking
systems is that automatic tracking often fails for target fea-
ture points which change shape due to perspective projec-
tion, appear and disappear due to occlusion, or move against a
changing textured background. Many of the algorithms may
have difficulties with image-to-model feature correlation, fea-
ture persistence for tracking over more than a few frames,
foreground-background segmentation, and detection and cor-
rection of correlation and tracking errors.

Model-based techniques address these issues by taking ad-
vantage of a priori knowledge of the object whose pose and
motion is to be estimated. This knowledge typically con-

sists of a CAD description of the object incorporating known
structure, shape, textures, transmittance/reflectance, or other
visual attributes. 2D or 3D appearance models correspond-
ing to one or more objects may be used to estimate the model
pose from image measurements.

Techniques used in model-based pose estimation include
feature-based model tracking [6], model-to-image regis-
tration using various point-set registration algorithms [1],
[7], [17], simultaneous pose and correspondence determina-
tion [4], template matching [9], contour tracking [8], and ar-
ticulated object tracking [11].

Model-Based Pose Estimation & Tracking

Model-based pose estimation and tracking can be decom-
posed into a three-stage process. The first stage is initial rel-
ative pose estimation. This stage is used to bootstrap, or ini-
tialize, the pose refinement and tracking stages. Given some
a priori model of the object (e.g. fiducial point locations,
a surface structure representation, or a viewpoint-dependent
appearance model), the system computes a candidate initial
relative pose for the object to be tracked.

This step is performed principally when the tracker requires
initialization, either at the start of tracking, or whenever loss
of tracking lock occurs. The initial pose estimate may be
obtained using such techniques as Active Appearance Mod-
els [14], [12] and robust PCA/Eigentracking [2], [10], [16] or
simultaneous pose and correspondence determination (soft-
POSIT) [4].

The second stage is pose refinement. Given a coarse initial
pose estimate, perhaps obtained as the predicted pose from a
pose tracking stage, the model-based pose refinement algo-
rithm implementation discussed in this paper renders a view
of a model (based on a CAD model or predetermined set of
features) and uses an iterative reweighted least squares ap-
proach to match the rendered model with image measure-
ments along a set of lines normal to the rendered model edges.

A solution to the iterative reweighted least squares problem
is an estimate of the best fit Euclidean transformation, which
provides an estimate of the translation and rotation of the
model relative to the camera frame. The implementation is
based on Drummond and Cipolla’s work on real-time visual
pose estimation for complex structures with known models
[5].

The third stage, pose tracking, utilizes an extended Kalman
filter to track the relative pose estimate over time using a
known motion model, providing robust estimates and predic-
tions of pose and pose error covariance.

This paper focuses primarily on an implementation of the
model-based pose refinement algorithm. Benefits of the im-
plemented model-based pose refinement approach include the
following:

2



Figure 2. Pose Refinement and Tracking Architecture. Blue=Initial Conditions, Yellow=Pose Refinement, Red=Pose Tracking

• The model-based pose estimation algorithm works with
any number of cameras and does not require active sensors.
Use is not restricted to parallax stereo camera configurations,
as long as the relative camera orientations are known.

• The algorithm is designed to handle perspective distortion
and self-occlusion of the 3D model during its projective view
rendering step. Visibility algorithms such as backface culling
and hidden line/surface removal are incorporated into the al-
gorithm.

• The algorithm provides additional “features” (modeled
edges and connectivity information, etc.) to improve a model
match. This results in a global correspondence which reduces
the effect of measurement outliers due to the aperture prob-
lem inherent in local feature matches.

• Fiducial markings can be naturally integrated into the 3D
surface model representation. Note that given sufficient visi-
bility and object shape complexity, the model-based pose es-
timation/refinement and tracking approach works with “non-
cooperative” objects which do not have specific fiducial
markings; thus there is no need to retrofit existing objects
with separate fiducial markings.

• The model fit provides an error estimation for pose valida-
tion. A model fit error above a given threshold can signal the
tracker to begin re-initialization.

• Fusion of pose estimates from multiple viewpoints (e.g.
wingtip, pylon, and tail cameras on an aircraft) may be ac-
commodated either natively in the pose estimation algorithm
or via sensor fusion in the tracking filter. Fusion of the pose
estimates requires knowledge of inter-camera alignment.

• The tracking filter may include motion models for object
dynamics to improve the model correspondence and tracking
performance. The motion model can thus take advantage of
a priori knowledge of relative or absolute orbital dynamics,
platform and target (aero)dynamics, or may use a simplified
constant-velocity motion model.

3. MODEL-BASED POSE REFINEMENT

The implemented model-based pose refinement algorithm
utilizes an Iterative Reweighted Least-Squares (IRLS) for-
mulation to minimize the correspondence error between pro-
jected model contours (silhouette or potentially visible in-
terior edges) and the edges detected in one or more cam-
era images [5]. The fit provides relative pose pseudo-
“measurements” for use in the tracking filter. A simplified
version of the approach, assuming a single camera, is illus-
trated in Figure 3.

Figure 3. Model-Based Pose Refinement Algorithm

The algorithm takes as inputs at each invocation the current
predicted estimate of relative pose (in the figure, the orien-
tation quaternion qest and the relative position rest) and one
or more processed camera images Iedge. Potentially visible
silhouette and internal edges are selected according to the es-
timated pose and projected onto the image plane.
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Sample points are selected at regular intervals along the pro-
jected model edges and a one-dimensional search is per-
formed orthogonal to the projected model edge to locate the
nearest “edge” (gradient local maximum) in the camera im-
age.

An IRLS optimization approach is used to find the best fit
of the model pose to the camera image (i.e. to minimize the
distances to detected edges at each sample point). The fit re-
sults in an incremental “motion” approximated as a Euclidean
transformation consisting of a rotation matrix R and a trans-
lation vector t.

The algorithm typically converges in only a few IRLS iter-
ations, depending on initial pose estimate accuracy. The re-
sulting pose parameters (expressed in Figure 3 as the attitude
quaternion qM and relative position vector rM ) are extracted
from the Euclidean transformation matrix E after the IRLS
iterations are completed.

Mathematically, the approach is as follows. A perspective
camera can be modeled as a projective transform M of a
scene point P = (x, y, z, 1) to an image point p = (u, v, 1).
Homogeneous coordinates are used here to facilitate calcu-
lations in the projective space (note the augmentation of the
three-dimensional vector P and two-dimensional vector p by
a 1).
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The intermediate representation (X, Y, Z)T = Z(u, v, 1)T

represents an equivalence relation wherein 3D scene points
Pi = (xi, yi, zi, 1)T are equivalent (they map to the same
point p = (u, v, 1)T in 2D space) if application of the projec-
tive transform M results in vectors differing only by a scalar
factor ci, e.g. MPi = (ciu, civ, ci)

T = ci(u, v, 1)T .

M can be factored into the product of the intrinsic calibra-
tion matrix K (an affine transformation that represents the
skew s, focal lengths and aspect ratio fu/fv, and center of
projection (u0, v0) of the camera) and an extrinsic matrix
E = (R t), which represents the orthonormal rotation ma-
trix R and translation vector t of the camera relative to the
world (or alternatively an object’s) reference frame.
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Rigid motion of the camera relative to the target structure can
be represented by an additional Euclidean transformation EM

such that the updated projective transform after the motion
becomes

p′ =

(

1

Z ′
M ′

)

P =

(

1

Z ′
MEM

)

P. (3)

The goal of model based pose estimation is to measure the
Euclidean transformation EM , using only image measure-
ments and prior knowledge of model points P and the pro-
jective transform M .

The Euclidean transform EM is obtained from the exponen-
tial map

EM = exp(
∑

i

αiGi) (4)

where G forms an orthonormal basis for a vector space of
derivatives of 6DOF rigid body motions, and αi are the six
coefficients in this basis. EM can be linearized under the as-
sumption that the interframe motion is small. Using a Taylor
series expansion truncated at the linear term:

EM ≈ I +
∑

i

αiGi (5)

where I is the identity matrix. This simplifies the motion
estimation problem to finding the coefficients αi that best de-
scribe the motion.

A motion estimate first requires a correspondence hypothe-
sis between the model and the image. Define a set of sample
points Ξ such that each ξ ∈ Ξ corresponds to a sample point
P ξ on the model, relative to the model reference frame. A
projection pξ of PΞ can be found using (3), where the pro-
jection of all non self-occluding ξ ∈ Ξ is a rendering of the
model for a given initial model pose estimate EM and cali-
brated projection matrix M .

Selection of these sample points is determined by visibil-
ity checking algorithms, which can use backface culling,
hardware-accelerated Z-buffers, and other constructs such as
fast binary space partition (BSP) trees to dynamically deter-
mine visible model features for rendering and processing in
real-time.

For each pξ, define the vector n̂ξ normal to the projected
model edge. Search along the line spanned by n̂ξ in the in-
tensity image I for the nearest brightness edge with intensity
gradient above a given threshold, as determined by applica-
tion of the Sobel edge operator S(I):

S(I) =
∑

x,y

∑

j,k

K(j, k)I(x − j, y − k) (6)

using kernels

Kh =


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
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
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

 (8)

such that the magnitude of the edge (|S|) is

|S| =
√

S2
h(I) + S2

v(I) (9)
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where Sh corresponds to the Sobel edge operator with kernel
Kh. The distance dξ is the Euclidean distance between the
model point ξ and the nearest edge along the normal line n̂ξ.
This distance defines a correspondence between the model
and the image.

Using the estimates dξ from the hypothesized model corre-
spondence, it can be shown that the least squares solution to
the coefficients α is

vi =
∑

ξ

s(dξ)dξ(Lξ
i • n̂ξ) (10)

Cij =
∑

ξ

s(dξ)(Lξ
i • n̂ξ)(Lξ

i • n̂ξ) (11)

such that
αi = C−1

ij vj (12)

and Lξ
i is the linearized projected derivative of translation or

rotation in the ith direction. The weighting function

s(dξ) =
1

c + |dξ |
(13)

provides a weight that depends on d and changes with each
iteration. s(dξ) may be considered a “saliency” measure for
each sample point ξ, and may be further extended according
to predicted model edge strength or other heuristics. The con-
stant c is typically chosen to be approximately one standard
deviation of the inlying data.

The motion estimate EM is generated from the motion coef-
ficients αi using (4). To improve the robustness of the motion
estimate to outliers, the least squares solution is iterated. On
each iteration, the motion estimate EM is reapplied to the
camera projection model (3), which generates a reweighting
from (13) and a new reweighted least squares solution in (12).

The new solution in (12) is iterated until either a fixed number
of iterations or some other heuristic threshold is reached (for
example, when the matrix norm of motion difference between
two subsequent iterations is below a given threshold).

Note that the pose refinement algorithm requires an initial es-
timate of relative pose. A one-shot pose estimation algorithm
can be used to “bootstrap” the algorithm with a coarse initial
pose estimate, from which the pose refinement algorithm can
proceed.

Once the pose is initialized and tracking commences, the out-
put of a pose tracking filter can provide the predicted relative
pose as the initial alignment for the next invocation of the
model-based pose refinement algorithm.

Example Scenarios

The model-based pose refinement algorithm has been ap-
plied to a number of different scenarios and camera image
sequences. Figure 4 shows examples of this approach for sev-
eral application scenarios. On the left is a simple “aerospace”

object whose relative pose is being tracked by the algorithm.
On the right, a model of a DC-10 tanker is being tracked in
an Autonomous Aerial Refueling (AAR) scenario.

(a)Wireframe models

(b)Synthetically generated camera imagery

(c)Overlay of tracked pose

Figure 4. Model-Based Pose Estimation for Example
Aerospace Object (left) and Autonomous Air Refueling Sce-
nario (right)

Figure 4(a) shows the wireframe models for the tracked ob-
jects. In these examples, the models are used for both render-
ing synthetic camera images and for the model-based pose re-
finement algorithm. The sample objects are constructed using
texture-mapped quad-mesh or triangle-mesh representations,
and exhibit different curvatures and textures.

Figure 4(b) shows synthetically-generated camera images for
the two objects. The tanker (right) is shown from a poten-
tial refueling viewpoint. Note the textured surface of the
aerospace object (left) and the textured cloud background
in the AAR scenario. These textures result in detection of
“false” edges during processing, stressing the pose refinement
algorithm and potentially leading to outlier measurements.

The camera images and predicted model pose are passed to
the pose refinement algorithm, which generates updated pose
estimates. The projected model edges for the refined and reg-
istered pose are shown in Figure 4(c) as white overlays on
the original camera intensity images. The examples shown
exhibit good correspondence after several iterations, given an
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initial pose error of 10–15 degrees.

4. TEST ENVIRONMENT

In this section we briefly describe the hardware and software
testing facilities and data sources used to test and validate the
model-based pose refinement and tracking algorithms.

The VISARD Analysis Testbed consists of a software tool-
box and a Hardware-In-the-Loop (HIL) testbed. The toolbox
includes algorithm and utility function categories listed in Ta-
ble 1.

Table 1. VISARD Software Toolbox Functions

VISARD Software Toolbox Functions
View Synthesis Algorithms
Image Preprocessing Algorithms
Model-Based Pose Refinement / Estimation Algorithms
Pose Tracking Filter (Extended Kalman Filter)
Feature-Based Stereo Tracking Algorithms
Additional Algorithms and Utilities:

Image preprocessing for tracking algorithms
3D object model import/export/manipulation
Algorithm testing routines
VISARD HIL Testbed interface
Simulink blockset
etc.

A key aspect of the VISARD Analysis Testbed is the ability
to synthesize or capture real camera image sequences along
with synchronized ground truth information. For synthesized
camera imagery, ground truth information is directly avail-
able from the simulated pose states. The HIL Testbed pro-
vides stereo camera imagery and ground truth pose informa-
tion for small models using a motion-controlled gantry.

HIL Testbed

The VISARD Hardware-In-the-Loop (HIL) Testbed includes
a stereo camera pair which feeds a live stereo video stream
to a PC-based frame grabber/vision processor. The hardware
operates under controlled lighting conditions to emulate an
orbital/space visibility environment for basic testing of the
algorithms using scaled-down object mockups.

The VISARD HIL testbed features a 3DOF motion-
controlled gantry, stereo image capture, encoder feedback for
ground truth, a controlled lighting environment, and a control
and data acquisition interface to the MATLAB simulation and
analysis environment. See Figure 5 for a picture of the HIL
testbed setup with a custom-built Magellan 1/24 scale model
mounted.

Figure 5. VISARD HIL Testbed

5. ALGORITHM TESTS AND EVALUATION

This section outlines a number of tests and results obtained
using the implemented VISARD pose refinement and track-
ing algorithms. The algorithms were first tested using synthe-
sized imagery and later applied to real video sequences cap-
tured using the VISARD HIL Testbed. Ground-truth relative
pose information was captured along with the stereo camera
imagery.

The goal of this testing was to characterize the performance
of the pose refinement and tracking algorithms with respect
to a number of parameters:

• Errors in Initial Pose Estimate
• Model-Based Pose Refinement and Tracking Algorithm
Parameters
• Sensor Characteristics
• Characteristics of Tracked Object
• Various Environmental Factors

Ground Truth Motion Profiles

Several “ground truth” motion profiles were designed to pro-
vide a range of motions realizable using the testbed, and to
ensure repeatability and uniformity between synthetically-
generated and testbed-acquired imagery. A brief description
of several of the profiles is included in Table 2.
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Table 2. Motion Profiles Used For Algorithm Testing

Profile ID Description
1 Sequence of constant-velocity motions
2 Concatenation of profiles 3, 4, and 5
3 Straight-line departure down centerline,

constant-velocity rotation
4 Lissajous-type translational profile,

constant-velocity rotation
5 Spiral (sinusoidal) approach profile,

reversed direction rotation
6 Another Lissajous translational profile,

constant-velocity rotation

Overview of Algorithm Testing

During algorithm testing, real and synthesized stereo cam-
era image sequences were generated for various scenarios re-
quiring relative pose estimation and tracking. Test scenarios
included space-based rendezvous and proximity operations,
aircraft mid-air refueling, and ground-based visual servoing.

Figures 6–8 show several examples of the types of objects
used for algorithm testing. These objects include various ob-
jects of different shapes and complexities, a 1/20 scale Delta
II second-stage rocket body model, a 1/72 scale Soyuz satel-
lite model, and a Magellan 1/24 scale model. The tracked
model pose for one frame of selected test camera image se-
quences is shown in Figures 7–8 as a green overlay on the
original camera image.

Figure 6. A few of the object models used for testing. Clock-
wise from top left: (a) simple block-type object (sscMbox),
(b) Delta II second-stage rocket body, (c) 1/24 scale Magellan
spacecraft, and (d) 1/72 scale Soyuz spacecraft models.

Real camera image sequences were obtained from the HIL
testbed for the Soyuz and Magellan models. Synthesized
camera imagery was used for the Delta II model and for a
number of other models of varying types, shapes, and com-
plexity. Ground truth information was obtained from the view
synthesis module or using the hardware-in-the-loop 3DOF

(a)Tracked Delta II 2nd Stage Rocket Body Model

(b)Tracked Soyuz 1/72 Scale Satellite Model

Figure 7. Additional Examples of Model-Based Pose Re-
finement & Tracking. Green overlay of tracked model pose
shows good correspondence.

gantry testbed.

Effect of Initial Pose Errors on Algorithm Performance

Table 3 summarizes some of the test parameters used to ana-
lyze the effect of intial pose errors on pose refinement algo-
rithm performance.

Table 3. Test Information

Test Setup: Effect of Initial Pose Errors
Algorithm: Model-Based Tracker (MBT)

Pose Refinement Algorithm
Image Sequence(s): 202 (synthetic, 640x480)
Motion profile: 2
Model: sscMbox
Test Case(s): 3,4,5
Tests IDs shown: 202.100.[3,4,5]
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Figure 8. Model-Based Tracking of Magellan 1/24 Scale
Spacecraft using real stereo camera imagery obtained us-
ing SSCI’s Hardware-in-the-Loop Testbed. Green overlay of
tracked model pose shows good correspondence.

Analysis and Discussion— For Test Cases 3, 4, and 5, errors
were injected into initial pose estimates to characterize the
performance of the MBT pose refinement algorithm.

Relatively small initial attitude or position errors at close
range may translate to large apparent movements in the image
plane, reducing pose estimation performance. For this reason,
absolute error distributions for initial position estimates were
specified as percentages of object range.

For Test Case 3 (initial attitude error), the initial pose estimate
was generated by rotating the true attitude about a random
axis. The amount of rotation was randomly selected from a
uniform distribution (0 to 30 degrees).

Figure 9 shows the effect of initial attitude errors on the re-
fined pose attitude for synthetic Test Sequence #202. Note
that the algorithm is able to handle large initial attitude errors
of up to 23 degrees for this model before the mean measure-
ment error begins to exceed 5 degrees.

For Test case 4 (transverse position error), the true pose was
perturbed by a random position error applied in the (X,Y)
plane (orthogonal to the cameras’ line of sight). For this case,
errors in X and Y were independently selected from a uniform
distribution over [-1,1] x 3% of range in each of the two axes.

Figure 10 demonstrates the effect of transverse errors on the
refined pose attitude for this sequence. This shows that for
the given object at this scale and range (between 0.58 and
1.53 m in this sequence), the mean error in measured attitude
does not exceed 5 degrees until the transverse position error
exceeds 3.5% of the object range.

For Test case 5 (range error), the true pose was perturbed by a
random position error applied along the sensor Z axis (range),

parallel to the cameras’ line of sight. For this case, range
errors were selected from a uniform distribution over [-1,1] x
10% of range.

Figure 11 shows similar results for initial range errors as for
transverse errors; however, in this case, the algorithm eas-
ily handles injected range errors up to and exceeding 10% of
range. Further testing would need to be performed to deter-
mine a “cutoff” range of operation for this setup. 2

Effect of Number of IRLS Iterations on Algorithm Perfor-
mance

Table 4 summarizes some of the test parameters used to an-
alyze the effect of the number of IRLS iterations on pose re-
finement algorithm performance.

Table 4. Test Information

Test Setup: Effect of IRLS Iterations
Algorithm: Model-Based Tracker (MBT)

Pose Refinement Algorithm
Image Sequence(s): 202 (synthetic, 640x480)
Motion profile: 2
Model: sscMbox
Test Case(s): 3, 6–8
Tests IDs shown: 202.100.[3,6–8]

Analysis and Discussion— The number of IRLS iterations
used by the Model-Based Pose Refinement algorithm directly
affects the accuracy of the refined pose and the CPU process-
ing requirements.

Table 5 shows the specified iteration limits and the average
number of iterations per frame of the test sequence for the
test cases shown. Note that for Test Case 7, the average num-
ber of iterations was only half the specified maximum; the
heuristic allows the tracker to bypass extra iterations if the
measurement has already “converged.”

Table 5. Effect of Adjusting IRLS Iteration Limits

Test Point IRLS Mean Init Err,
ID Sep. # Iter # Iter Meas Err ≈ 5◦

6 3 2 2 13
8 3 8 8 21-23
3 4 ≤ 10 8.29 23
7 3 ≤ 25 13.26 27

When the initial error is small, the process quickly converges
within one or two iterations (see Figure 12(a), in which the
algorithm is limited to 2 iterations). Note that initial attitude
errors of below about 10 degrees result in only a few degrees
of measurement error for this test case. Although measure-
ment error is reduced for larger initial attitude errors, more
iterations are required to further improve measurement ac-
curacy. On average, about 10 degrees of the initial error is
removed within the first two iterations.
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Figure 9. Test 202.100.3, Initial Attitude Errors

Figure 10. Test 202.100.4, Initial Transverse Position Errors
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Figure 11. Test 202.100.5, Initial Range Errors.

Increasing to 8 iterations in Test Case 8 (Figure 12(b)) pro-
vides a larger reduction in error, so that the same measure-
ment errors result given twice the initial attitude error (about
20 degrees). This comes at about a fourfold increase in pro-
cessor computation, which seems to increase approximately
linearly with the number of IRLS iterations performed. Test
Case 7 (Figure 13(b)) shows that given after another 5 iter-
ations on average, measurement errors are only slightly re-
duced, again at an additional overall expense in processing
time. Test cases 3 and 7 (Figures 13(a) and 13(b) respec-
tively) use a heuristic metric to allow early termination of the
IRLS iterations when convergence is attained. 2

Model-Based Pose Refinement on Real Image Sequence

Table 6 summarizes some of the test parameters used to ana-
lyze the effect of intial pose errors on pose refinement algo-
rithm performance.

Analysis and Discussion—For this test, an initial attitude er-
ror was injected to characterize the performance of the model-
based pose refinement algorithm. Real camera imagery of
the Magellan 1/24 scale model was obtained using the HIL
testbed. The range of motion for motion profile 2 was 0.63–
1.58 m at 1/24 scale, corresponding to full-scale motion be-
tween 15–38 m. The injected initial attitude error, uniformly-
distributed over the interval [0,30] degrees, was applied about
a random axis.

Table 6. Test Information

Test Setup: Initial Pose Error on Real Image Sequence
Algorithm: Model-Based Tracker (MBT)

Pose Refinement Algorithm
Image Sequence(s): 60 (Real image sequence, 640x480)
Motion profile: 2
Model: Magellan 1/24 Scale Model

(scanned, 5000 polygons)
Test Case(s): 3
Tests IDs shown: 60.3.3

Measurement errors for the full range of attitude initialization
errors (uniformly sampled from 0 to 30 degrees) exhibited the
following characteristics:

Attitude: µ=6.5 deg, σ=8.4 deg (max 35.7 deg).
Position: µ=1.6 cm, σ=2.6 cm (max 20.9 cm).

Over the reduced interval of 0-15 degrees initial error, the
pose refinement errors showed a significant improvement:

Attitude: µ=1.4 deg, σ=1.7 deg (max 15.0 deg).
Position: µ=4.7 mm, σ=4.6 mm (max 3.9 cm).

The average number of IRLS iterations per sample for this
test was 9.7.

Figure 14 shows the attitude measurement error with respect
to initial attitude error for Test 60.3.3. Note the “knee” of the
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(a)Test 202.100.6, 2 IRLS Iterations

(b)Test 202.100.8, 8 IRLS Iterations

Figure 12. Effect of IRLS Iteration Limits on Algorithm Performance
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(a)Test 202.100.3, Max 10 IRLS Iterations (Averaged 8.3)

(b)Test 202.100.7, Max 25 IRLS Iterations (Averaged 13.3)

Figure 13. Effect of IRLS Iteration Limits on Algorithm Performance (continued)
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curve around 15 degrees; the algorithm performs much better
for initial angular errors below this level. 2

Model-Based Pose Tracking on Real Image Sequence

Table 7 summarizes some of the test parameters used to ana-
lyze the effect of intial pose errors on pose refinement algo-
rithm performance.

Table 7. Test Information

Test Setup: Model-Based Tracking, Real Image Sequence
Algorithm: Model-Based Tracker (MBT)

Pose Refinement Algorithm
Tracking Filter: Simple fixed-gain recursive

IIR linear tracking filter
Image Sequence(s): 27 (Real image sequence, 640x480)
Motion profile: 1
Model: Magellan 1/24 Scale Model

(scanned, 5000 polygons)
Test Case(s): 16
Tests IDs shown: 27.3.16

Analysis and Discussion—This test shows some tracking re-
sults for real camera imagery obtained using the VISARD
HIL testbed with the Magellan 1/24 scale spacecraft model.
The motion profile (Test Profile 1) consisted of a series of
connected linear (constant-velocity) motion segments. The
range of motion was between 0.57 m and 1.53 m at 1/24 scale,
corresponding to a full-scale range between 14 m and 37 m
respectively.

The maximum angular velocity exhibited by this motion pro-
file was 4 degrees per frame. At a processing rate of 25
frames per second (fps), the effective angular rate would be
100 deg/s. The maximum translational velocity was approx-
imately 5.8 mm/frame, or about 3.48 m/s at full scale and 25
fps.

The position measurement error for the tracked sequence ex-
hibited the following characteristics, where µ and σ are the
mean and standard deviations, respectively:

Attitude: µ=0.86 deg, σ=0.45 deg (max 3.28 deg).
Position: µ=4.3 mm, σ=2.5 mm (max 20.9 mm).

Figure 15 summarizes the tracking performance with respect
to initial attitude error, while Figure 16 and Figure 17 show
the frame-by-frame tracked motion profile and measurement
errors respectively. The average number of IRLS iterations
per frame for this test was 4.07. 2

Overall Pose Refinement Algorithm Performance

Table 8 summarizes the effective model-based pose refine-
ment and tracking performance given uniformly-distributed
errors in the initial attitude estimate. The data analyzed and
summarized in the table are taken from the HIL-generated
real camera imagery sequences utilizing the Magellan 1/24
scale spacecraft model.

Table 8. Pose Refinement Algorithm Performance

Angular
Initialization
Error (deg)

Mean Angular
Measurement
Error (deg)

Approximate
Standard

Deviation (deg)
0 - 2 1.783 1.338
0 - 4 1.797 1.361
0 - 6 1.795 1.354
0 - 8 1.851 1.478

0 - 10 1.952 1.635
0 - 12 2.129 1.905
0 - 14 2.411 2.391
0 - 16 2.837 3.045
0 - 18 3.392 3.866
0 - 20 4.119 4.926
0 - 22 5.021 6.049
0 - 24 6.080 7.199
0 - 26 7.199 8.279
0 - 28 8.335 9.270
0 - 30 9.498 10.225

Note that the means and standard deviations in Table 8 result
from a uniformly-distributed angular initialization error. The
mean angular measurement error for all initialization errors
between 0 and 10 degrees, for example, was 1.952 degrees.
This information is shown graphically in Figure 18.

The lower bound (about 2 degrees) of the mean angular mea-
surement error with small initialization errors is due to a com-
bination of several factors, including systematic errors in ex-
periment hardware (imager resolution, object mounting toler-
ances, etc.) and algorithm parameters (sample point density,
search length, etc.) 2

Discussion and Additional Observations

Axially Symmetric Objects—Items exhibiting an axially sym-
metric structure, such as the Delta II rocket body model (as
well as the Soyuz spacecraft, when viewed from certain di-
rections) demonstrate relatively few cues for determining the
amount of rotation about their principal axes. For distant
or high-noise cases, or for long sequences exhibiting large
changes in angular velocity, angular estimate errors about this
axis may accumulate when tracking the pose for these objects
for an extended period of time. However, a low-value 2DOF
“pointing error” can often be maintained even with slippage
about this primary axis.

Tests for Real Camera Sequences—Results obtained for real
camera image sequences using the hardware testbed were
very similar to those obtained for synthesized imagery. The
Magellan model, for instance, was successfully tracked over a
wide range of lighting conditions and camera gain / exposure
/ brightness settings using both synthesized and real video
streams. However, performance using the synthetically-
generated imagery was for most model shapes noticeably bet-
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Figure 14. Attitude Measurement Error w.r.t. Initial Error, TestID 60.3.3

Figure 15. Tracking Performance, TestID 27.3.16

14



Figure 16. Tracked Motion Profile, TestID 27.3.16
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Figure 17. Measurement/Tracking Errors, TestID 27.3.16
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Figure 18. Model-Based Pose Refinement Algorithm Performance, Magellan Model

ter than that obtained with the real testbed imagery due to
the lack of mounting imprecisions, fewer lighting and defo-
cus/blurring artifacts, etc.

The tracking algorithms had a more difficult time with the
Soyuz model. The physical model is about a third the size of
the Magellan model (1/72 scale compared to 1/24 scale), and
was painted a dark color which was difficult to distinguish
from the black background. In addition, the solar panels were
much more difficult to distinguish at times due to their highly
specular reflectivity, and they would periodically “disappear”
when they moved in line with the body of the model. Further-
more, there were no other significant body shape attributes
that could provide a good indication of z-axis rotation. How-
ever, in a number of the test cases, the tracking filter was still
able to guide the estimate through these spurious conditions.

Model-Based Pose Refinement Algorithm Parameters—Spec-
ification of appropriate Model-Based Pose Estimation algo-
rithm parameters such as search length, sample point separa-
tion criteria, and maximum number of IRLS iterations is crit-
ical to the operation of the tracker. Selection of good search
length and sample point separation criteria involves tradeoffs
between known statistics of pose estimate initialization ac-
curacy, estimated object size and range, and expected object
edge visibility statistics.

If an initial pose estimate (either fed back from previous it-
erations or provided by a “bootstrap” initialization routine) is

statistically known to some “good” accuracy, a smaller search
length both reduces search time and also the likelihood of out-
liers due to incorrect matching of sample points with distant
strong edges found in the preprocessed camera images.

As the object moves further away from the cameras or the
sensor image size is decreased, the likelihood of these in-
correct associations increases because apparent edges draw
closer to each other in the camera images. In addition, low
sample point density in this case may not allow a sufficient
number of associations to be made to accurately refine the
pose.

Conversely, when the initial pose estimate accuracy is very
coarse or the object is very close to the camera sensor, larger
search lengths may be needed to ensure that the correct object
edges are found. High sample point density in this case may
use significant processor resources without a corresponding
improvement in pose measurement accuracy.

Finite pixel sizes lead to a lower bound on useful search
length and sample point separation, causing tracking failure
for extremely small/distant objects or very low-resolution im-
ages even without additional camera image noise.

One possible approach to intelligently handling these trade-
offs is to continually adjust the search length and sample
point density according to image size, object dimensions, ini-
tial range estimate, and filter covariance/convergence metrics.
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This would improve flexibility by allowing optimal perfor-
mance of the tracker over a wide range of operating condi-
tions, and reduce the number of trial-and-error iterations for
manually selecting the appropriate parameters.

Optimally accounting for initial pose estimate accuracy re-
quires an estimate of how “good” the initial pose is. This
may be obtained from filter convergence metrics or operating
assumptions for the module providing the initial pose. For
example, one would likely choose a larger search length to
start off a tracker and reduce the search length as the tracker
covariance decreases.

Optimal selection of these test parameters was not done for
the tests detailed herein, but with a widely-varying class of
objects to track, it would be a useful feature to improve algo-
rithm robustness against these factors.

6. CONCLUSIONS

The VISARD suite of algorithms includes pose estimation
and tracking algorithms, as well as tools for synthetic stereo
view synthesis and a Hardware-In-the-Loop Testbed. The
algorithms include both model-free and model-based ap-
proaches to vision-based RSO pose estimation and tracking.
The algorithms described in this paper fall into the latter class.

Substantial testing was performed on the algorithms using
both synthesized and real stereo camera imagery, using a
number of different model types. For the tested scenarios,
models, and testbed configurations, test results indicated that
in most cases, the Model-Based Tracker pose estimation algo-
rithm can handle initial pose errors with the following com-
ponents:

• Attitude Errors: up to about 20 degrees
• Transverse Errors: up to about 2% of range (depending on
model, sensor resolution, etc.)
• Range Errors : more than 10% of range

For the tests using the Magellan 1/24 scale model, the root
mean square error (RMSE) of the model-based pose refine-
ment relative position, given uniformly-distributed initial at-
titude errors of up to 30 degrees, was approximately [5.16
2.92 30.0] mm in the camera [X,Y,Z] coordinate frame, or
5.93 mm transverse error and 30.0 mm range error respec-
tively. At full scale, this corresponds to an effective RMSE of
14.2 cm (transverse) and 72.0 cm (range).

The Model-Based Tracker pose refinement algorithm imple-
mented in the VISARD toolset has a number of strengths
compared to active-sensor or traditional feature-based visual
tracking approaches. Benefits include:

• The ability to use any number of cameras
• Use is not restricted to a parallax stereo camera configura-
tion

• Full 6DOF pose measurements are available as outputs of
the algorithm
• The algorithm uses passive sensors and does not require
retrofitting of targets with fiducial markings
• It can use low-cost, commercial off-the-shelf cameras
• The algorithm can be implemented to run in real-time

Inherent limitations of the algorithm include

• It requires an initial pose estimate
• A model of the tracked object is required
• Accuracy may be limited due to low image resolution and
large distances (as with all image-based approaches)

Recommendations for Future Work

The model-based tracking algorithms developed during this
investigation have a wide range of possible applications, from
autonomous space rendezvous to close-formation flight for
mid-air refueling tasks. We feel that the set of tools in the
VISARD framework is a good basis for developing vision-
based autonomy applications, but there are several enhance-
ments necessary for a fully autonomous pose estiamtion and
tracking system.

Testing results showed that the VISARD pose tracking algo-
rithm performance is highly dependent on the initial pose esti-
mate accuracy. However, pose estimation initialization is still
somewhat of an unanswered question. Several methods of
obtaining initial pose estimates were investigated during the
course of this investigation, some of which seem promising.

Finally, performance of the model-based pose refinement
and tracking algorithm would greatly benefit from a method
of online selection/optimization of algorithm parameters, as
would integration of known fiducial markings into the pose
refinement scheme. These items should be addressed as top-
ics for further study in order to fully utilize the potential of
these algorithms.
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