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�

Scientific Systems Company, Inc.
500 West Cummings Park, Suite 3000, Woburn, MA 01801

Phone: (781) 933-5355, Fax: (781) 938-4752
rkm@ssci.com, http://www.ssci.com

Abstract

The paper describes the development, implementation and flight testing of the Visual Threat Awareness

(VISTA) system and the Multi-layer Architecture for Trajectory Replanning and Intelligent plan eXecution

(MATRIX) for autonomous intelligent control of Unmanned Aerial Vehicles (UAVs). The VISTA system

generates information on the threats and obstacles in real-time, and passes it on to the MATRIX system that

makes mission-related decisions and generates new waypoints and a trajectory that safely avoids the obstacle.

The VISTA system combines binocular visual stereo, perceptual organization, graph partitioning and feature

tracking for a passive system to enable real-time obstacle detection. Computational stereo performance has

progressed such that there now exist several commercial or open source implementations that operate at frame

rate, but suffer from well known correspondence errors. We show that introducing a global segmentation step

after commodity stereo can increase robustness and leverage existing stereo software. The global segmenta-

tion step is based on a graph structure appropriate for collision detection, human vision inspired perceptual

organization and graph partitioning using the minimum s-t graph cut. This system has been prototyped using

Sarnoff Corp’s Acadia I vision processor to enable 640x480@(3-5) Hz operation on embedded avionics at ac-

curacies of
�

6ft at 50ft. We describe VISTA system theory and show proof of concept and flight experiment

results of the MATRIX/VISTA system on Georgia Tech’s GT-Max autonomous helicopter.�
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1 Introduction

Unmanned Aerial Vehicles (UAVs) are envisioned as an integral part of future military forces. Large scale

UAVs will perform autonomous tasks such as high-altitude reconnaissance, Close Air Support, Suppression of

Enemy Air Defenses, and aerial refueling. Small scale UAVs will enable on-demand intelligence, surveillance

and reconnaissance tasks including: ”over the hill” reconnaissance, ”perch and stare” surveillance, biological

and chemical agent detection, precision strike missions, and battle damage assessment. Such tasks require

that a UAV exhibit autonomous operation including collision avoidance. UAVs flying “nap of the earth”

below the treetops risk collision with obstacles whose position cannot be guaranteed as known before flight.

UAVs must include situational awareness based on sensing and perception of the immediate environment to

locate collision dangers and plan an appropriate avoidance path [1]. A desired autonomous intelligent control

architecture for UAVs integrates threat/obstacle awareness with intelligent decision making, path planning

and trajectory generation to achieve effective threat avoidance and mission completion. A robust system

must accomplish this autonomy during a high-speed flight, in low visibility, cluttered environment, and under

subsystem and/or component failures, resulting in a challenging autonomous control problem.

Sensors considered for collision detection include active or passive sensors. Active RADAR or LIDAR

(light detecting and ranging) sensors for manned aircraft are currently under investigation for use in UAVs

[2, 3]. These sensors provide resolution appropriate for wire detection, but exhibit sparse measurements, non-

covert operation due to emitted radiation, and a form factor and power requirement that does not currently

scale to the smallest micro air vehicles (MAVs). Passive sensors based on visual electro-optical (EO) or

forward looking infrared (FLIR) are promising due to low size weight and power requirements and a lack

of emitted radiation, but require significant image processing to detect obstacles. Bhanu et al. [1] argue for

a maximally passive system that combines narrow field of view active sensors for wire detection with wide

field of view passive stereo sensors for peripheral visibility. This paper proposes a passive stereo system for

visual obstacle detection suitable for integration into such a maximally passive system.

In this paper, we describe the development, implementation and flight tests of the Visual Threat Awareness

Avoidance (VISTA) system for passive, stereo image based obstacle detection, its integration with the Multi-

layer Architecture for Trajectory Replanning and Intelligent plan eXecution (MATRIX) for autonomous in-

telligent control of UAVs. The VISTA system combines block matching stereo computed on the Acadia I

vision processor designed by the Sarnoff Corporation [4] with image segmentation based on a special pur-
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Figure 1: (left) MATRIX: Multi-layer Architecture for Trajectory Re-planning and Intelligent plan eXecution
(ADP - Achievable Dynamic Performance) (right) FLARE: Fast on-Line Actuator Reconfiguration Enhance-
ment System

pose graph representation appropriate for collision detection, human vision inspired perceptual organization

and efficient graph partitioning based on the recursive minimum s-t graph cut. This segmentation provides a

means to increase robustness to stereo correspondence errors as will be described in this paper and provides

constraints suitable for motion planning and avoidance. This paper will describe system theory and show

experimental results from flight tests on Georgia Tech’s GT-Max autonomous helicopter [5].

2 MATRIX System Architecture

The Multi-layer Architecture for Trajectory Replanning and Intelligent plan eXecution or MATRIX system

is an overall architecture for autonomous motion planning. The MATRIX system block diagram is shown in

Figure 1. The role of this system is to integrate threat detection algorithms with on-line path planning and

trajectory generation within an effective multi-layer architecture for pop-up threat avoidance under subsys-

tem and component faults and failures. In this section, specific layers in the MATRIX architecture will be

described in more detail.

The adaptive reconfigurable control layer combines partial feedback linearization and sliding mode con-

trol with zero dynamics stabilization using outer-loop LQR controller as shown in figure 2. The controller

was extended to add a retrofit module for accommodation of loss-of-effectiveness failure of flight control ac-

tuators. The extended algorithm was flight tested using Georgia Tech’s GT-Max helicopter under the DARPA
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Figure 2: HELICON: Nonlinear helicopter controller

SEC Program [17].

The failure detection, identification and reconfiguration (FDIR) layer monitors the health of UAV subsys-

tems and components, detects faults, failures and structural damage, and reconfigures the controls to achieve

effective failure and damage accommodation while maintaining or gracefully degrading the desired flight

performance. We have developed several efficient algorithms for effective FDIR in the presence of actuator

failures, control effector damage, and damage-generated disturbances. The main architecture that was devel-

oped is referred to as FLARE (Fast on-Line Actuator Reconfiguration Enhancement), and is shown in Figure

1. Actuator health status is monitored by multiple decentralized FDI observers, while the damage conditions

and disturbances are detected by the Global FDI system. The FDI information is passed on to the retrofit

reconfigurable controller that assures fast reconfiguration and system stability. The FLARE system was re-

cently evaluated through piloted F/A-18 aircraft simulations at Boeing and NASA Dryden yielding excellent

results in the presence of severe flight-critical failures [18, 20]. The FLARE system was also implemented

under the DARPA SEC program on Georgia Tech’s GT-Max autonomous helicopter [17].

The autonomous trajectory generation (ATG) layer fits a feasible trajectory through the way-points even

while satisfying the state, control input, and spatial constraints. Trajectory generation is commonly based on

minimization of a given criterion such as time between the way points, fuel consumption, or low exposure

to known stationary threats, and can be generated either on-line or off-line. In the case of failures, upsets, or

other anticipated or unanticipated events, the path planning layer automatically reconfigures the desired path

by modifying the way-points, while the trajectory generation layer fits a feasible trajectory that is achievable

under the circumstances. In this project, we have explored trajectory generation algorithms based on splines

and higher order polynomials [17].
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Figure 3: MATRIX flight experiment in the DARPA SEC Program

The achievable dynamic performance (ADP) layer provides a measurement of the maximum performance

that the vehicle can achieve under different faults, failures, and external disturbances in a dynamically varying

environment. The ADP measure is calculated on-line at the inner-loop control level, and passed on to the

higher hierarchical levels that make appropriate changes to reflect the new lowered capabilities of the vehicle.

We implemented the ADP concept under the DARPA SEC program by on-line identification of the position

limits of the helicopter rudder, and ADP measure calculation based on this estimate [17].

The autonomous path planning (APP) layer generates the motion plan for the overall mission, and com-

putes spatial and other constraints needed for the design of the desired trajectories. Many of the routes

and constraints can be computed off-line to cover different situations, including the nominal case and a

set of anticipated events, and stored in memory. The constraints are computed in the form of safe set

boundaries around the way-points. We have developed the path-planning algorithms based on the follow-

ing techniques: (i) Voronoi diagrams and Delaunay triangulation; (ii) Mixed-integer/LMI algorithms; and

(iii) Rapidly-exploring Random Trees (RRT) [17].

The autonomous decision making (ADM) layer has the information about the overall mission objectives

and constraints. This information, in conjunction with the sensory and ADP information and situational

awareness, is used to make appropriate decisions as trade-offs between the mission success and vehicle sur-

vivability. This layer is responsible for collision avoidance, conflict resolution, mission retasking, and goal

reassessment.
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2.1 MATRIX Flight Test Results

Under the Final Experiment of the DARPA SEC Program, we demonstrated the MATRIX system through

flight tests. The ADP measure was used to make a decision to retask a mission, recalculate achievable paths

after a vehicle failure and fit a new feasible trajectory between the waypoints. This is shown in Figure 3. The

control system first replans the trajectory to avoid a pop-up threat in the no-failure case. Following that, a

rudder lock-in-place occurs that changes the position limits; this is detected by the Limit Detection System

that calculates a new ADP measure and passes this information to the ADM layer that makes a decision to

retask the mission (follow a larger-radius circle); this information is passed on to the APP layer that calculates

new waypoints, and the ATG layer that fit a new trajectory through these waypoints.

3 VISTA System Architecture

The Visual Threat Awareness (VISTA) system is an approach to collision obstacle detection based on real

time stereo, graph partitioning, perceptual organization and feature tracking. A block diagram of the system

is shown in figure 4. A stereo pair of cameras is mounted forward looking on the UAV to monitor the region

through which the UAV will fly. On each iteration, imagery is captured from a calibrated stereo pair of

cameras and passed to the Acadia I vision processor which computes a disparity map. The disparity map

is proportional to the scene depth, or distance to points within the scene. The imagery and disparity maps

are foveated using a log-polar mapping compression and fused into an affinity graph representation using
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perceptual organization techniques. The affinity graph is recursively bipartitioned using a minimum s-t graph

cut resulting in an estimate of � regions within the imagery. Statistics are computed for each region, and those

that pass a statistical test are reconstructed using stereo triangulation and represented with a bounding ellipse.

These regions are tracked using a Kalman filter and those regions with a given tracking confidence above

a threshold are labeled obstacle hypotheses. Obstacle hypotheses that fall within the flight path are labeled

collision obstacle hypotheses with the closest collision obstacle labeled nearest collision obstacle. Collision

obstacle hypotheses are measurements of the position and size of possible collision dangers which provide

dynamic constraints for avoidance.

3.1 Computational Stereo

Computational stereo is the process of extracting three-dimensional scene structure from two or more images

taken from distinct viewpoints [6]. This computation requires a three step process of calibration, correspon-

dence and reconstruction.

Stereo calibration is the process of measuring the parameters which define the camera intrinsics, stereo

intrinsics and stereo extrinsics. The camera intrinsic parameters or camera intrinsics define a transformation

between 3D scene coordinates and 2D image coordinates that take into account uncertainties introduced in

the camera manufacturing process, geometric lens distortion and other nonlinearities. In this system, camera

intrinsic calibration is a coupled process of radial lens distortion correction and camera projection matrix

estimation using the approach described in [17].

Stereo correspondence is the process of establishing matching points in stereo imagery. A point at a

finite distance from a stereo pair will exhibit a disparity or change in position between matching points in

each image due to the change in viewpoint. Stereo geometry constraints the position of matching points to

be along epipolar lines in the image, and calibrated stereo pairs in epipolar alignment further constrain the

position to be along an image scanline. Stereo correspondence techniques attempt to find matching points in

the left and right imagery by exploiting constraints such as epipolar geometry, ordering, brightness constancy,

edge consistency and uniqueness [6]. However, this matching can be ambiguous when features in one image

do not have an identical and unique match in the other image. This may be due to viewpoint (foreshortening),

multiple feature match (regions of low contrast, periodic features) or no feature match (specular reflections,

occlusion, minimum distance violation). Many correspondence techniques include a matching confidence
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Figure 5: Tradeoff between stereo threshold and correspondence quality. (left) Grayscale imagery (mid-
dle) Disparity map with low threshold (right) Disparity map with high threshold. Dark gray=far,light
gray=close,white=undefined

threshold to discard poor matches, however as shown in 5, the quality of the correspondence is sensitive to

this threshold. The low threshold disparity map in 5b introduces severe matching errors in the sky due to low

contrast, but exhibits excellent smooth correspondence on the ground. The high threshold disparity map in

5c removes the sky errors, but also removes some correct correspondence on the ground. It is unclear how to

choose this threshold in general, without introducing false alarms or missed detections in an unconstrained

outdoor environment. This point will be revisited in the next section.

In this system, stereo correspondence is computed on the Acadia I vision processor using a sum of

absolute differences (SAD) block matching approach along epipolar scanlines, with left/right consistency

checking and maximum 32 disparity search [4]. SAD estimates are thresholded, and those points with SAD

measure above this threshold define a disparity map which is proportional to scene depth using stereo recon-

struction. The Acadia I vision processor is dedicated to stereo processing, resulting in 640x480 disparity map

computation at 23Hz.

Finally, stereo reconstruction is the computation of depth from disparity determined from correspondence

and stereo geometry determined from calibration This reconstruction uses standard stereo triangulation to

recover 3D scene structure from 2D projections [7], resulting in depth measurements to points in the scene,

which provides collision distance for obstacle detection.

3.2 Foveation

Foveation refers to a space variant image representation with a high resolution central region or fovea sur-

rounded by a lower resolution periphery [8, 9]. In the context of collision detection, foveation provides the
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Figure 6: Example of foveation using the log-polar mapping

benefits of compression and focus of attention. Collision detection systems exhibit a tradeoff between sensor

resolution for detection of small obstacles, and detection time requirements for safe operation. Computational

complexity is proportional to sensor resolution, so limited computational resources require that computation

is appropriately focused. Foveation retains high resolution in the image center, which has a high likelihood

of containing a collision obstacle since the image center of a forward looking sensor can be actively aligned

with the current heading. Foveation also reduces the resolution in the periphery which may contain an obsta-

cle, but a low likelihood of containing a collision obstacle. Therefore, foveation allows the system to focus

available computational resources on those spatial image regions that are likely to contain collision dangers.

The lower resolution periphery provides image compression that is appropriate for collision detection, and

focuses computation on the image center which is likely to contain collision dangers.

Foveation can be implemented using a log-polar mapping [9], such that the space variant resolution is

proportional to the log of the distance from the image center. An example of the log-polar mapping is shown

in figure 6. Pixels in figure 6a are mapped to nearest log-polar sectors with centroids represented as circles in

figure 6b, such that the median grayscale intensity represents the entire sector in the log-polar mapping as in

figure 6c.

3.3 Segmentation

Segmentation can be defined as the process of labeling an image such that features with equal labels are

“similar” and features with unequal labels are “dissimilar”. A labeling defines groupings of pixels into regions

such that pixels with a common label belong together in some sense, and pixels with different labels do not. In

the context of obstacle detection, segmentation provides hypothesized obstacle size and obstacle boundaries
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for motion planning. Hypothesized obstacle boundaries are boundaries between segmentation labels, which

can be used to compensate for the stereo correspondence errors described in section 3.1 by ignoring disparity

within groups and enforcing the edge consistency constraint along a label boundary.

The segmentation problem can be posed formally as an energy minimization problem [10]. Assume

that there exists a finite set of points �����
	���
�	���
�������
�	���� that fall within the field of view of the sen-

sor for which measurements can be taken. For each point 	�� , a sensor can capture a multidimensional

measurement ����	 � � �!�#" � 
$" � 
�������
$"&%'� , such that the total set of all measurements for all points is( �)���*�+	 �,� 
-�*�+	 �#� 
�������
-�*�+	�� � � . Each measurement is some descriptive feature of 	 � that may include

intensity, texture, color, intensity gradient, motion, depth or others. A labeling ./�0� � is a mapping from � to1
where

1
is a finite set of labels. An energy optimal labeling . �

minimizes the energy function 2 [11]

23�4. � �657�8:9<; 7 � . 7 ��= 5> 7�? @
A08 �
B 7�? @ �4. 7 
,. @ � (1)

. � �DC:E$FHGJILKM 23�4. � (2)

; 7 is a function which encodes the cost of assigning label . 7 to 	 , which represents prior knowledge about

the true labeling of 	 .
B 7�? @ is a function which encodes the cost of assigning label . 7 to 	 and a different label

. @ to N when ��	�

N � are neighbors in a given neighborhood set OQPR�RST� . This function represents a penalty

for violating label smoothness for neighboring ��	�

N � . Solutions . �
to the energy minimization problem are

difficult to find in general since (1) can be non-convex in a high dimensional space.

In this application, we approach the energy minimization in (2) as a recursive maximum network flow

problem. Using the Ford-Fulkerson theorem, it can be shown that a solution to the maximum network flow

or maxflow problem is also a solution to the minimum graph cut or mincut problem [12]. The mincut on a

network flow graph defines a graph bipartition which is equivalent to a binary labeling. This binary labeling is

an exact solution to the energy minimization in (2) assuming that ; 7 is equal to the terminal edge capacities

and
B 7U? @ is equal to the edge capacities such that

B 7�? @ is a regular function as defined in [11]. Recursive

application of the binary labeling generates a � -labeling such that the maximum of the inter-partition flows is

minimized among all possible partitions of V into the same number of partitions [13].

Example segmentations are shown in figure 7 (row three), where regions of constant color have the same

label. An example of the first and last steps in the recursive bipartition are shown in the segmentation subblock

of figure 4.
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3.4 Obstacle Detection and Tracking

Obstacle detection and tracking includes boundary statistics, region reconstruction and obstacle tracking. The

� -partition from section 3.3 defines a set of � -regions in the image which must be reconstructed in 3D using

the stereo geometry and disparity. For each region, we compute boundary statistics for measurements about

the boundary of each region. Those regions with statistics above a given threshold are reconstructed in 3D

using the boundary disparity. Region centroids are used to determine if the region falls within the tracking

volume. Such regions are parameterized by the bounding ellipse, and tracked using a Kalman filter.

Boundary statistics can be used to compensate for stereo correspondence errors by ignoring disparity in

region interiors and by checking the edge consistency constraint along region boundaries. Boundary statis-

tics are those statistics which are computed over all feature measurements at the boundary of a given region.

As discussed in section 3.1, noisy stereo disparity estimates may be introduced due to poorly chosen stereo

threshold or stereo correspondence errors from scene geometry. Noisy disparity results in incorrect 3D re-

construction which can generate false alarm obstacles, or missed obstacles altogether. Stereo correspondence

is strongest in areas exhibiting intensity edges corresponding to local maxima in intensity gradients. By

nature of the segmentation process and the formulation of node affinity, the interior of a segmented region

will exhibit smooth changes in feature measurements, and the boundary will exhibit violations of smooth-

ness. Therefore, he boundary of a segment will exhibit stronger correspondence than the interior, which

means the disparity interior to a region can be discarded in favor of the disparity at the boundary. In other

words, disparity from regions of low contrast is ignored. The edge consistency constraint is commonly used

in computational stereo to constrain the search for correspondence [14], such that disparity along intensity

edges should be smoothly varying. Any violation of the edge consistency constraint is an indication of in-

correct correspondence. Therefore, we define an edge consistency check in terms of disparity variance along

a boundary, such that a region with a boundary variance above a threshold violates edge consistency and is

discarded.

Those regions which pass the edge consistency check are reconstructed in 3D using the bounding ellipse

of the region. Bounding ellipses which fall within a given tracking volume are labeled obstacle hypotheses

and bounding ellipses which fall within a given collision volume are labeled collision obstacle hypotheses.

Those ellipses outside the tracking volume are ignored for computational efficiently, The ellipse parameters

for obstacle hypotheses are then passed as measurements to a Kalman Filter for obstacle tracking [15]. Each
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obstacle is tracked independently such that obstacles which enter and exit the tracking volume spawn or

destroy their associated filter. Measurement assignment is determined by comparing the measurement to all

obstacles within a specified gating distance. Measurements are assigned to the obstacle with the minimum

error in ellipse parameters and closest mean intensity. The result is a state estimate WX % and state estimate

covariance �/% for the bounding ellipse of each obstacle in the inertial frame of the vehicle. Detected obstacles

within the collision volume are then passed to the control system for motion planning.

3.5 VISTA Flight Test Results

Flight experiments for the VISTA system were performed on the Georgia Tech GT-Max autonomous he-

licopter platform [5], outfitted with the VISTA flight computer and stereo cameras. Flights 1,4,5 had the

helicopter autonomously approach a ”sign” obstacle, which was a 40”x30” piece of white foamcore mounted

on the top of a 21’ tall, 0.75” diameter pole. Flights 2,3 replaced the ”sign” with a ”pole” obstacle, which

was a 90”x20” piece of black foamcore representing the top section of a 20” diameter telephone pole. The

helicopter approached the obstacles at a constant velocity and altitude, with variable heading (north/south

or east/west), forward speed and ambient lighting for each flight. Flight experiments were performed in a

field in McDonough GA that included hay bales, trees, tarpaulins, gantry and ground station vehicles in the

background.

Figure 7 shows sample imagery and processing results from five flight experiments. Flight data includes

calibrated grayscale imagery, disparity maps, segmentation results and obstacle detection. The obstacle de-

tection imagery shows that the nearest collision obstacle is detected as shown with a green ellipse, but also

additional obstacles are detected as shown with yellow ellipses. These obstacles include cars, hay bales,

tarpaulins and a gantry in the background that are in fact obstacles which are corrected detected by the sys-

tem.

Figure 7 also show a graph of obstacle detection performance. The ground truth position of the collision

obstacle was captured after each flight, and the obstacle estimation error was computed by comparing the

tracking estimate of the green ellipse centroid to the ground truth obstacle centroid. The detection error

graphs show the Euclidean distance between the estimated position of the obstacle W� and the ground truth

position � , such that the error at time index YZ2 � �\[ �^] W�3[ . The position estimation error is shown in

blue. The red plot shows the predicted estimation error given the ground truth distance to the obstacle and
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Flight 1 Flight 2 Flight 3 Flight 4 Flight 5

Figure 7: VISTA sample imagery and flight experiment results for collision detection scenarios. From
top to bottom: calibrated grayscale imagery from left camera, foveated disparity map (dark gray=far, light
gray=close, white=undefined), k-partition segmentation (solid color=region), obstacle detection (yellow el-
lipse=tracked obstacle, green ellipse=nearest collision obstacle, green text=collision distance to nearest col-
lision obstacle), obstacle detection performance evaluation
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the known resolution of stereo. Stereo estimation error reflects the nonlinear range resolution of stereo due

to pixel quantization, such that the uncertainty in range for a single disparity is proportional to the square of

the range. At time index Y , the helicopter with position �`_ is at range a�_b�c[ �d]e�f_g[ from the obstacle. The

stereo range resolution at distance a:_ is given by

hji ��aU_ � � a �_k . (3)

for a known baseline
k

in meters and focal length . in pixel units. This range resolution is the expected

uncertainty for a single disparity which is due to pixel quantization error and stereo geometry. A correct

detection result should track the error 23�la:_ �`mdn hTi ��aU_ � , where 2 is the range uncertainty due to a two pixel

disparity error. The error 2 is also a function of the vertical and horizontal position error, but these errors

is dominated by range uncertainty for the distances considered in UAV flight, and are negligible in practice

[16]. The plots show that the position estimation error does track 2 , and at times improves on the expected

error due to subpixel disparity estimates from tracking and from disparity averaging.

The obstacle detection performance results include processing results for the entire run, including the

period in which the helicopter is pitching down during acceleration, and pitching up during halt. The plots

begin at the first time index in which the obstacle is detected, which shows that there are no false alarms. The

accuracy of detection at the closest point (50ft) is shown in the plots to be
�

6ft on average which follows

from the theoretical range resolution of stereo. Runtime performance for each flight ranged from 3-5Hz, with

variations due to scene complexity affecting the total number of regions k of the recursive bipartition.

4 Summary

This paper has described the VISTA system for visual threat awareness and the MATRIX system for au-

tonomous motion planning. The VISTA system has demonstrated the first application of 640x480@23Hz

embedded stereo hardware in UAV flight with a real time (3-5Hz) algorithm that improves obstacle detection

performance over traditional stereo only. Proof of concept has been demonstrated in six flight experiments

against real obstacles with no false alarms at accuracies of 6ft@50ft. The MATRIX system was flight tested

under simulated vehicle failures and popup threats as shown in figure 3. Future work includes urban flight

experiments of the integrated MATRIX/VISTA system involving multiple obstacles and trajectories.
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