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Abstract— This paper presents the Visual Threat Awareness
(VISTA) system for real time collision obstacle detection for an
unmanned air vehicle (UAV). Computational stereo performance
has progressed such that several commercial or open source
implementations are available which operate at frame rate, but
suffer from well known correspondence errors. We show that
introducing a global segmentation step after commodity stereo
can increase robustness and leverage existing stereo software.
The global segmentation step is based on a graph structure ap-
propriate for collision detection, human vision inspired foveation,
perceptual organization and graph partitioning using the mini-
mum s-t graph cut. This system has been prototyped using the
Sarnoff Acadia I vision processor to enable processing of 640x480
resolution imagery at 5-10Hz operation on embedded avionics.
We describe system theory, demonstrate segmentation results
on scenes of increasing complexity, and show flight experiment
results on Georgia Tech’s GT-Max autonomous helicopter against
real collision obstacles.

I. INTRODUCTION

Unmanned Air Vehicles (UAVs) are envisioned as an inte-
gral part of future civilian and military operations, including
intelligence, surveillance and reconnaissance (ISR) missions,
search and rescue missions and surveillance for homeland
security. These missions often require a UAV to fly nap-of-
the-earth, risking collision with low level obstacles such as
trees and buildings whose position cannot be guaranteed as
known before flight. Practical UAVs must include situational
awareness based on sensing and perception of the immediate
environment to locate collision dangers and plan an appropri-
ate avoidance path.

Sensors considered for collision detection can be charac-
terized as active or passive sensors. Active sensors, such as
millimeter-wave and microwave RADAR, are currently under
investigation for detect, see and avoid (DSA) capability for
large UAVs [1]. These sensors exhibit all weather operation
with resolution appropriate for wire detection, however mea-
surements are sparse with a low scan rate, the sensor is non-
covert due to active emission of radiation, and the sensor
form factor does not currently scale to micro air vehicles.
Passive sensors based on visual electro-optical (EO) or forward
looking infrared (FLIR) are promising due to low size, weight
and power requirements as well as a lack of emitted radiation.
However, they require significant image processing to detect
obstacles and require a narrow field of view for wire detection
which limits sensor coverage. Bhanu et al. [2] argue for a
maximally passive system that combines narrow field of view

active sensors for wire detection with wide field of view
passive stereo sensors for coverage. This paper proposes a
passive stereo system for visual obstacle detection suitable for
integration into such a maximally passive system.

Visual obstacle detection is a well explored problem in the
literature. Techniques include differential invariants of optical
flow [3][4][5][6], horopter, multibaseline and omnidirectional
stereo [7][8][9][10], structure from motion [11][12], bearing
only methods [13] and obstacle classification [14]. A full
review is out of the scope of this paper, however the tech-
niques mentioned all require an explicit or implicit solution
to the correspondence problem to establish matching features
in distinct viewpoints to reconstruct scene structure. Local
correspondence errors can generate false or missed obstacles,
so a practical visual obstacle detection approach must be
robust to such errors. In this paper, we use binocular stereo,
focusing on a global segmentation technique performed after
stereo correspondence to improve robustness to these errors.

Stereo obstacle detection is difficult due to the variability
of an unstructured outdoor environment. Computational stereo
computes scene structure by establishing correspondence be-
tween features in each image, however variability in surface
reflectance, lighting and viewpoint may introduce matching er-
rors that manifest as false or missed obstacles. Real time stereo
software based on area correlation or block matching is cur-
rently commercially available, but this software suffers from
these local correspondence errors and performance is sensi-
tive to the choice of a fixed matching confidence threshold.
Recent developments in computational stereo show significant
improvements over block matching in indoor environments,
however the state of the art is not real time and remains
sensitive to occlusions [15][16]. Therefore, we propose to
combine existing real time stereo with a global segmentation
step to increase robustness to correspondence errors, resulting
in a practical obstacle detection system suitable for real time
operation.

This paper presents the Visual Threat Awareness (VISTA)
system for passive, stereo image based obstacle detection for
an unmanned air vehicle. The VISTA system combines block
matching stereo computed on the Acadia I vision processor
designed by Sarnoff Corporation [17] with image segmentation
based on a special purpose graph representation appropriate
for collision detection, perceptual organization and efficient
graph partitioning based on the minimum graph cut. This
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Fig. 1. Visual Threat Awareness (VISTA) system block diagram.

segmentation provides a means to increase robustness to stereo
correspondence errors, and provides boundary constraints suit-
able for motion planning. This paper will describe system
theory, demonstrate qualitative segmentation performance on
imagery of increasing complexity, and show flight experiment
results on Georgia Tech’s GT-Max autonomous helicopter [18]
in real collision scenarios.

II. SYSTEM ARCHITECTURE

The Visual Threat Awareness (VISTA) system is an ap-
proach to collision obstacle detection based on real time
stereo, graph partitioning and perceptual organization. A block
diagram of the system is shown in figure 1. A stereo pair of
cameras is mounted forward looking on the UAV to monitor
the region through which the UAV will fly. On each iteration,
imagery is captured from a calibrated stereo pair of cameras
and passed to the Acadia I vision processor which computes
a stereo disparity map (section II-A) which is proportional to
the 3D scene geometry. The imagery and disparity maps are
foveated using a log-polar mapping compression (section II-B)
and fused into an affinity graph representation (section II-C)
using perceptual organization techniques. The affinity graph is
recursively bipartitioned using a minimum graph cut (section
II-C) resulting in an estimate of k-regions within the imagery.
Those regions which pass an edge consistency test (section II-
D) are 3D reconstructed, represented with a bounding ellipse
and tracked using a Kalman filter (section II-D) forming an
obstacle map suitable for motion planning and avoidance. Each
of these blocks will be described in more detail.

A. Computational Stereo
Computational stereo is the process of extracting three-

dimensional scene structure from two or more images taken
from distinct viewpoints. This computation requires a solution
for stereo correspondence which is the process of establishing
the projection of a scene point in each image. Correspondence
techniques attempt to find matching points in the imagery
by exploiting constraints such as epipolar geometry, order-
ing, brightness constancy, edge consistency and uniqueness
[15][16]. However, this matching can be ambiguous when
features in one image do not have an identical and unique

match in the other image. This may be due to viewpoint
changes (foreshortening), multiple feature match (regions of
low contrast, periodic features) or no feature match (specular
reflections, occlusion, minimum distance violation).

Real time block matching correspondence techniques, such
as the commercial products available from Videre Design,
Point Grey or Tyzx, include a matching confidence threshold
to discard poor matches. However, as shown in figure 2, the
accuracy of the correspondence is sensitive to the choice of
this threshold, and it is unclear how to choose this threshold in
general in an outdoor environment without introducing false
alarms or missed detections.

In this system, stereo correspondence is computed on the
Acadia I vision processor [17] using a sum of absolute
differences (SAD) block matching approach along calibrated
epipolar scanlines, with left/right consistency checking and
maximum 32 disparity search. The Acadia I vision processor
is able to compute 640x480 binocular stereo at 23Hz.

B. Foveation

Foveation refers to a space variant image representation with
a high resolution central region or fovea surrounded by a lower
resolution periphery [19]. This approach is inspired by the
structure of the human retina which features a space variant
distribution of light sensitive elements.

In the context of collision detection, foveation provides col-
lision appropriate image compression. Foveation retains high
resolution in the image center, which has a high likelihood
of containing a collision obstacle due to alignment of vehicle
heading with the optical axis of the sensor. Foveation also
reduces the resolution in the periphery which may contain
an obstacle, but a low likelihood of containing a collision
obstacle. This approach focuses available computational re-
sources on those spatial image regions that are likely to contain
collision dangers.

Foveation can be implemented using a log-polar mapping
[19], such that the space variant resolution is proportional to
the log of the distance from the image center. An example of
the log-polar mapping is shown in figure 3.



Fig. 2. Tradeoff between stereo matching threshold and correspondence
accuracy. (left) Grayscale image (middle) Disparity map with low threshold
(right) Disparity map with high threshold. The low threshold introduces severe
correspondence errors in the sky (Dark=far,light=near,white=undefined)

C. Segmentation

Segmentation can be defined as the process of labeling
features in an image such that features with equal labels are
“similar” and “belong together” in some sense, and features
with unequal labels do not.

In the context of obstacle detection, segmentation provides
a foundation for rejecting stereo correspondence errors. As
previously discussed, stereo correspondence errors are gener-
ated when image features do not have an identical and unique
match. If we introduce a segmentation step such that “similar”
is defined as smoothly varying feature measurements, then
a segmentation will define k-regions such that within group
features are smoothly varying and between group features are
discontinuous. Smoothly varying features will generate poor
stereo correspondence due to low contrast, so a segmentation
can safely ignore all disparity interior to a region, and focus
only on disparity at the region boundary. Boundary disparity
can be checked for the edge consistency constraint [20], which
states that a true object boundary should exhibit smoothly
varying disparity. Those regions passing this check are used
for motion planning.

A suitable segmentation algorithm must be stable and
scalable. A stable algorithm will generate a consistent seg-
mentation given a slightly different perspective of a scene.
Local segmentation approaches such as thresholding, cluster-
ing, region growing, split-and-merge and deformable contour
techniques are sensitive to initial conditions and often generate
inconsistent segmentations in smooth regions [21]. As a result,
in this system, we use a global segmentation technique based
on recursive minimum cut of an affinity graph. This approach
exhibits stability due to the use of global image information,
with a polynomial computational complexity for scalability to
large images.

The segmentation problem can be posed formally as a
Bayesian energy minimization problem [22]. Assume that
there exists a finite set of points P = {p1, p2, . . . , pN} that fall
within the field of view of the sensor for which measurements
can be taken. For each point pi, a sensor can capture a
multidimensional measurement M(pi) = {m1, m2, . . . , mk},
such that the total set of all measurements for all points
is S = {M(p1), M(p2), . . . , M(pN )}. Each measurement
is some descriptive feature of pi that may include intensity,
texture, color, intensity gradient, motion, depth or others. A
labeling f(P ) is a mapping from P to L where L is a finite

Fig. 3. Example of foveation using the log-polar mapping. (left) Original
image (middle) Graph representation of foveation (right) Foveated image with
high resolution central fovea and low resolution periphery.

set of labels. An energy optimal labeling f ∗ minimizes the
energy function E [23]

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

Vp,q(fp, fq) (1)

f∗ = argmin
f

E(f) (2)

Dp is a function which encodes the cost of assigning label fp

to p, which represents prior knowledge about the true labeling
of p. Vp,q is a function which encodes the cost of assigning
label fp to p and a different label fq to q when (p, q) are
neighbors in a given neighborhood set N ⊂ P × P . This
function represents a penalty for violating label smoothness
for neighboring (p, q). Solutions f ∗ to the energy minimization
problem are difficult to find in general since (1) can be non-
convex in a high dimensional space.

In this application, we approach the energy minimization in
(2) as a recursive maximum network flow problem. A network
flow graph is defined as a directed graph G = (V, E, W )
with nodes V , edges E and edge weights W . Edge weights
wij between nodes i and j are interpreted as capacities, and
certain distinguished nodes s and t in V are interpreted as
terminal nodes. The maximum network flow problem is that of
determining the maximum flow of some commodity between
terminal nodes such that the maximum flow on any edge is less
than or equal to capacity. Using the Ford-Fulkerson theorem,
it can be shown that a solution to the maximum network flow
problem is also a solution to the minimum graph cut or mincut
problem [24]. The mincut on a network flow graph defines
a graph bipartition which is equivalent to a binary labeling,
where the binary labeling is an exact solution to the energy
minimization in (2) assuming that Dp is equal to the terminal
edge capacities, Vp,q is equal to the edge capacities, and Vp,q

is a regular function as defined in [23]. Recursive application
of the binary labeling generates a k-labeling such that the
maximum of the inter-partition flows is minimized among all
possible partitions of G into the same number of partitions
[24].

This approach requires that imagery be abstracted to a net-
work flow graph representation suitable for obstacle detection.
Graph nodes and graph edges are defined using the log polar
mapping from section II-B. The log polar mapping is well
suited to the minimum cut since the cut value is invariant to
certain classes of expansion, such as rotationally symmetric
obstacles centered at the fovea. This type of expansion pattern
or looming may be generated by an approaching collision



Fig. 4. Segmentation examples. (top row): rendered sphere, rendered billboard, indoor hallway. (bottom row): building, large tree, small tree.

obstacle. Graph edge weights are encoded using the perceptual
organization heuristic of similarity [25][26] such that the edge
weight wij or node affinity between adjacent nodes i and j
can be defined as:

wij =

D
∑

d=1

αddij (3)

dij = exp

(

−(max((md(i) − md(j)), µd) − µd)
2

2σ2
d

)

(4)

Equation 4 is a nonlinear model for feature smoothness, which
is similar to the approach by Shi and Malik in [27]. Each node
i has D measurements m(i) = [m1, m2, . . . , mD]T , with the
measurement md(i) corresponding to the dth measurement
for the ith node, such as intensity, color, texture, depth or
others. The feature smoothness between nodes i and j is
parameterized by µd and σd which define the mean and
standard deviation for smooth feature changes. The resulting
node affinity is a linear combination of each feature smooth-
ness with weight αd. The form of equation 3 is related to
boosting in machine learning theory [28], which implies that
coefficients α may be determined using an offline boosting
procedure.

A common drawback of the minimum cut is that solutions
tend towards small groups [24][29]. To compensate, we intro-
duce a flow encoding F(wij ) which maps affinity wij to a
flow appropriate for the log-polar mapping and the minimum
cut.

F(wij) = C
(wij+1)

2 (5)

The choice of the constant C in (5) is chosen experimentally
to satisfy three flow constraints as discussed in [30].

In this application, the minimum cut of the network flow
graph is computed using a polynomial time augmenting path
approach proposed by Boykov and Kolmogorov [31]. Features
in equation (4) include foveated intensity and disparity. Ad-
ditional issues of oversegmentation, perceptual organization
heuristics, source-terminal (S-T) node assignment for network
flow graphs, recursion stopping criterion and flow encoding
are addressed in [30].

Examples of this segmentation approach are shown in figure
4. This figure shows segmentation performance on synthetic,
indoor and outdoor imagery. Regions of constant color in the

segmentation result correspond to those regions in the intensity
imagery with the same label. These images show segmentation
results that are qualitatively equivalent to human segmentation,
with some acceptable oversegmentation. Examples of the seg-
mentation approach in a flight experiment are shown in figure
5 (row two). Finally, the segmentation sub-block in figure 1
shows the first and last steps of the recursive bipartition.

D. Obstacle Detection and Tracking
Obstacle detection and tracking includes boundary statistics,

region reconstruction and obstacle tracking. The k-partition
from section II-C defines a set of k-regions such that the kth

region is a connected subgraph Gk = (Vk , Ek) with nodes
Vk, edges Ek , and boundary nodes Bk = {i ∈ Vk|(i, j) ∈
Ek, j /∈ Vk}. Boundary nodes have at least one graph edge in
a different region. The edge consistency constraint [20] states
that a true object boundary should exhibit smoothly varying
disparity. If the disparity variance for nodes Bk is above a
threshold, then this partition violates edge consistency and is
discarded as correspondence noise. Empirical tests show that
this boundary statistic threshold is more reliable than the stereo
matching threshold.

Those regions which pass the edge consistency check are
reconstructed in 3D using the mean boundary disparity and
linear triangulation, and are represented using the bounding
ellipse of the region. Each obstacle ellipse is independently
tracked using a Kalman filter, and the result is a state estimate
x̂k and state estimate covariance Pk for the bounding ellipse
of each obstacle in the inertial frame of the vehicle. The set
of obstacles that intersect a given collision volume are then
passed to the control system for motion planning.

III. FLIGHT EXPERIMENTS

Flight experiments were performed the Georgia Tech GT-
Max autonomous helicopter platform [18], outfitted with the
VISTA flight computer and stereo cameras. The system pa-
rameters were: stereo baseline B=50cm, lens focal length
f=12mm, pixel size p=12µm, image resolution=640x480 and
maximum stereo disparity=32. Parameters derived from these
system specs are: minimum spatial resolution of 0.3”@46.9’
(0.7cm@14.3m), and a one disparity distance of 1500ft
(457.2m). The VISTA flight computer consisted of the PCI



Fig. 5. VISTA flight experiment results for four collision detection scenarios (left-right): flights 1-4 (columns): Calibrated grayscale imagery from left camera,
k-partition segmentation (solid color=region), Obstacle detection overlay (yellow=tracked obstacle, green=nearest collision obstacle with collision distance),
Quantitative obstacle detection performance evaluation.

based Acadia I vision processor mounted on a battery powered
2.4GHz Pentium 4 motherboard. The system was attached
to the RMAX helicopter and all processing was performed
on board. Runtime performance of the system for each flight
ranged from 5Hz-10Hz due to scene complexity affecting the
total number of regions k of the recursive bipartition.

Figure 5 shows imagery and processing results from four
of nineteen flight experiments. These flight experiments had
the vehicle fly a true collision trajectory approaching either a
“sign” obstacle (40”x30” which foamcore) or “pole” obstacle
(90”x20” black foamcore) at an altitude of 21’ at speeds up
to 30ft/s. The obstacle detection results show that both the
pole (flight 2) and sign (flights 1,3,4) obstacles are correctly
detected at various collision distances, as well as other tracked
obstacles shown with yellow ellipses: hay bales and cars (flight
1-2), van (flight 2), gantry (flight 2) and ground tarpaulins
(flight 3). In flight 3, notice that the sign obstacle is visible
far in the background, but the nearest collision obstacle is

correctly detected as a ground tarpaulin obstacle.

Figure 5 includes graphs of obstacle detection performance.
The ground truth position of the collision obstacle was cap-
tured after each flight, and the obstacle estimation error was
computed by comparing the tracking estimate of the green
ellipse centroid to the ground truth obstacle centroid. The
blue plot shows the Euclidean distance between the estimated
position of the obstacle P̂ and the ground truth position P ,
such that the error at time index i is |P − P̂ |. The red plot
shows the predicted estimation error given the ground truth
distance to the obstacle from the UAV navigation solution and
the known range resolution of stereo. Stereo range resolution
is nonlinear in range due to pixel quantization error in stereo
triangulation, where the range uncertainty ∆z for a single
disparity at distance r is ∆z(r) = r2p/Bf . A correct detection
result should exhibit error E(r) ≤ 2∆z(r), where E is the
range uncertainty due to a two pixel disparity error. The error
E is also a function of the vertical and horizontal position



error, but these errors is dominated by range uncertainty for
the distances considered in UAV flight, and are negligible
in practice [32]. The plots show that the position estimation
error does follow the expected error bound E, occasionally
improving the error due to subpixel disparity estimates and
disparity averaging in the filter, or worsening the error due to
subpixel correspondence errors. Finally, the flight experiments
were carried out under various lighting conditions, but with a
fixed stereo threshold. The plots show that there are no false
alarm obstacle detections due to stereo correspondence errors.

IV. CONCLUSIONS

This paper has described the Visual Threat Awareness
(VISTA) system for passive stereo based obstacle detec-
tion. The VISTA system augmented the foundation of
640x480@23Hz stereo with a 5-10Hz global segmentation
step that improved performance over stereo alone. Proof of
concept was demonstrated in four flight experiments against
real obstacles on embedded hardware with no false alarms
and position estimation accuracies of ±6ft@50ft. Future work
includes extending the testing to include urban environments
with multiple obstacles, and to integrate an online motion
planner for avoidance.
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