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Abstract— Collision detection and estimation from a monoc-
ular visual sensor is an important enabling technology for safe
navigation of small or micro air vehicles in near earth flight.
In this paper, we introduce a new approach called expansion
segmentation, which simultaneously detects “collision danger
regions” of significant positive divergence in inertial aided video,
and estimates maximum likelihood time to collision (TTC) in
a correspondenceless framework within the danger regions.
This approach was motivated from a literature review which
showed that existing approaches make strong assumptions
about scene structure or camera motion, or pose collision
detection without determining obstacle boundaries, both of
which limit the operational envelope of a deployable system.
Expansion segmentation is based on a new formulation of 6-
DOF inertial aided TTC estimation, and a new derivation of a
first order TTC uncertainty model due to subpixel quantization
error and epipolar geometry uncertainty. Proof of concept
results are shown in a custom designed urban flight simulator
and on operational flight data from a small air vehicle.

I. INTRODUCTION

Safe and routine operation of autonomous vehicles re-

quires the robust detection of hazards in the path of the

vehicle, such that these hazards can be safely avoided

without causing harm to the vehicle, other objects or by-

standers. Obstacle detection approaches have been success-

fully demonstrated on autonomous ground vehicles, notably

in the DARPA grand challenge events, including extended

collision free operation in both off-road and controlled urban

terrain. These vehicles have sufficient size, weight and power

(SWAP) capabilities to support active sensors such as LIDAR

or millimeter wave RADAR, or use of a dominant ground

plane to aid in visual obstacle detection.

In contrast, small or micro air vehicles (MAVs) are small,

lightweight, and autonomous aerial systems that can fit in

a backpack, and promise to enable on-demand intelligence,

surveillance and reconnaissance tasks in a near-earth envi-

ronment. To move towards routine MAV flight in a near

earth environment, we first must demonstrate an “equivalent

level of safety” [1] to a human pilot using appropriate

sensors for the platform. Unlike ground vehicles, MAVs

introduce aggressive maneuvers which couples full 6-DOF

platform motion with sensor measurements, and feature

significant SWAP constraints that limit the use of active

sensors. Even those active sensors that have potential for
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Fig. 1. Expansion Segmentation provides (i) detection of significant
“collision dangers” in inertial aided video shown as a semitransparent
overlay and (ii) mean maximum likelihood time to collision estimation in
seconds within the danger region shown by color (yellow=far, red=close)

deployment on small UAVs [2] take away SWAP required

for the payload to achieve the primary mission, and such

approaches will not scale to the smallest MAVs. Furthermore,

the wingspan limitations of MAVs limit the range resolution

of stereo configurations [3], therefore an appropriate sensor

for collision detection on a MAV is monocular vision. While

monocular collision detection has been demonstrated in

controlled flight environments [4][5][6][7][8][9][10][11][12],

it remains a challenging problem due to the low false alarm

rate needed for practical deployment and the high detection

rate requirements for safety. In this paper, we review the

literature on current approaches for visual collision detec-

tion and estimation, and propose a new method to reflect

this analysis called expansion segmentation. This method

combines visual collision detection to localize significant

collision danger regions in forward looking aerial video,

with optimized time to collision estimation within the col-

lision danger region. Formally, expansion segmentation is

the labeling of “collision” and “non-collision” nodes in

a conditional Markov random field. The minimum energy

binary labeling is determined in an expectation-maximization

framework to iteratively estimate labeling using the min-

cut of an appropriately constructed affinity graph, and the

parameterization of the joint probability distribution for time

to collision and appearance. This joint probability provides

a global model of the collision region, which can be used to

estimate maximum likelihood time to collision over optical

flow likelihoods, which is used to aid with local motion

correspondence ambiguity.

New contributions of this work are as follows:

• Expansion segmentation theory and experimental results

as a new approach simultaneous collision detection and

estimation in a correspondenceless framework.

• Derivation of visual time to collision estimation using

inertial aiding
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• Derivation of a time to collision uncertainty model

showing inertial aiding is crucial to detect small ob-

stacles in urban flight

• Explicit use of derived time to collision uncertainty

model within the expansion segmentation framework.

• Custom designed urban flight simulator with ground

truth for closed loop performance evaluation

II. RELATED WORK

The dominant approaches in the literature for monocular

visual collision detection and estimation can be summarized

in four categories: structure from motion, ground plane

methods, flow divergence and insect inspired methods.

Structure from motion (SFM) is the problem of recovering

the motion of the camera and the structure of the scene from

images generated by a moving camera. SFM techniques [13]

provide a sparse or dense 3D reconstruction of the scene up

to an unknown scale and rigid transformation, which can be

used for obstacle detection when combined with an indepen-

dent scale estimate for metric reconstruction, such as from

inertial navigation to provide camera motion or from a known

scene scale. Modern structure from motion techniques gen-

erate impressive results for both online sequential and offline

batch large scale outdoor reconstruction. Recent applications

relevant to this investigation include online sparse reconstruc-

tion during MAV flight for downward looking cameras [14],

and visual landing of helicopters [15][16]. However, SFM

techniques consider motion along the camera’s optical axis as

found in a collision scenario to be degenerate due to the small

baseline, which results in significant triangulation uncertainty

near the focus of expansion (see section III) which must be

modelled appropriately for usable measurements.

Ground plane methods [17][18], also known as horopter

stereo, stereo homography, ground plane stereo or inverse

perspective mapping use an homography induced by a known

ground plane, such that any deviation from the ground plane

assumption in an image sequence is detected as an obstacle.

This approach has been widely used in environments that

exhibit a dominant ground plane, such as in the highway or

indoor ground vehicle community, however the ground plane

assumption is not relevant for aerial vehicles.

Flow divergence methods rely on the observation that

objects on a collision course with a monocular image sensor

exhibit expansion or looming, such that an obstacle projec-

tion grows larger on the sensor as the collision distance

closes [19][20]. This expansion is reflected in differential

properties of the optical flow field, and is centered at the

focus of expansion (FOE). The FOE is a stationary point

in the image such that expansion rate from the FOE or

positive divergence is proportional to the time to colli-

sion. Flow divergence estimation can noisy due to local

flow correspondence errors and the amplifying effect of

differentiation, so techniques rely on various assumptions

to improve estimation accuracy. These include assuming a

linear flow field due to narrow field of view during terminal

approach [19][21][20][22], assuming known camera motion

and positioning the FOE at image center [23][24][25][26],

Fig. 2. Epipolar geometry for time to collision estimation

or known obstacle boundaries for measurement integration

[22][23][27]. These strong assumptions limit the operational

envelope, which have lead some researchers to consider

the qualitative properties of the motion field rather than

metric properties from full 3D reconstruction as sufficient for

collision detection [28][20]. However, this does not provide

a measurement of time to collision and does not localize

collision obstacles in the field of view.

Insect vision research on the fly, locust and honeybee

show that these insects use differential patterns in the optical

flow field to navigate in the world. Specifically, research

has shown that locusts use expansion of the flow field or

“looming cue” to detect collisions and trigger a jumping

response [29]. This research has focused on biophysical

models of the Lobula Giant Movement Detector (LGMD),

a wide-field visual neuron that responds preferentially to

the looming visual stimuli that is present in impending

collisions. Models of the LGMD neuron have been proposed

[30] which rely on a “critical race” in an array of photore-

ceptors between excitation due to changing illumination on

photoreceptors, lateral inhibition and feedforward inhibition,

to generate a response increasing with photoreceptor edge

velocity. Analysis of the mathematical model underlying

this neural network shows that the computation being per-

formed is visual field integration of divergence for collision

detection, which is tightly coupled with motor neurons to

trigger a flight response. This shows that insects perform

collision detection, not reconstruction. This model has been

implemented on ground robots for experimental validation

[12][31][32], however the biophysical LGMD neural network

model has been criticized for lack of experimental validation

[33], and robotic experiments have shown results that do

not currently live up to the robustness of insect vision,

requiring significant parameter optimization and additional

flow aggregation schemes for false alarm reduction [34][35].

III. INERTIAL AIDED TIME TO COLLISION

In this section, we formulate the problem of estimating

time to collision using inertial aiding, and provide an uncer-

tainty analysis for this estimate.

A. Inertial Aided Epipolar Geometry

Figure 2 shows a calibrated camera C rigidly mounted

to a body frame B moving with a translational velocity

V and rotational velocity Ω. The body frame moves from

B to B′, and the camera captures perspective projections
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I and I′ at a sampling rate ts of 3D point P in camera

frames C and C′ respectively. The camera C is intrinsically

calibrated (K), the images (I) are lens distortion corrected,

and the rotational alignment from to body to the camera C
BR

is known from extrinsic calibration. The body orientation B
W R

and position B
W t is estimated at B and B′ relative to an inertial

frame W from an inertial navigation system. Using Craig

notation [36], the relative transform between camera frames

from C to C′ is C′

C T = (C′

B′T
B′

W T )(C
BT B

W T )−1, where C′

C R is the

upper 3x3 submatrix of C′

C T . Define a rotational homography

H = K(C′

C R)K−1, and the projection matrix (C
W P) which

is the upper 3x4 submatrix of (C
W T ) = (C′

B′T
B′

W T ), then the

focus of expansion or epipole e = K(C
W P)(B′

W t) which is the

projection of the origin of C′ in C. Given an estimate of

the essential matrix E = ˆC′

C TC′

C R from inertial aided epipolar

geometry, compute the epipolar line l′ = K−T EK−1 p, such

that corresponding points p and p′ which are constrained to

fall on epipolar lines l and l′. Finally, the time to collision

(τ ′) relative to C′ to P is:

τ ′ =
Z

V
=

(p− e)T (p− e)

(p− e)T (p′−H p)
ts (1)

where the rotation compensating homography H and epipole

e are determined from inertial aiding.

Intuitively, the time to collision τ ′ is determined by the

distance of a point p from the epipole divided by the

rate of expansion from the epipole due to translation only,

with rotational effects removed. τ ′ is completely determined

from image correspondences p and p′ as well as inertial

aided measurements H, e and sampling rate ts. Note that in

this formulation, “collision” is defined as the time required

for point P to intersect with an infinite image plane at

instantaneous velocity V , which depending on the extent

of the vehicle body may or may not pose an immediate

collision danger on the current trajectory. The full derivation

of equation (1) follows directly from the motion field, with

rotational homography and epipole assumed known from

inertial aiding.

B. Time to Collision Uncertainty Analysis

Without loss of generality, define the epipole e to be at the

image origin, such that equation (1) simplifies to τ = p/ ṗ,

where p is the Euclidean distance from the origin, and ṗ = v

is the radial rate of expansion along epipolar lines due to

translation only. Model p as a Gaussian random variable

with parameterization N(µp,σ
2
p), such that the variance σ2

p

is determined from the expected subpixel accuracy of p.

Model v as a difference two Gaussian random variables p′

and p, forming a discrete approximation to the temporal

derivative. Assuming independent measurements, a differ-

ence of Gaussians can be modeled with parameterization

N(µv,σ
2
v ) = N(µp′ − µp,2σ2

p).
Consider a first order Taylor series expansion of τ which

is a function τ(p,v) about the point (µp,µv).

τ ≈ τ(µp,µv)+ (p− µp)
∂τ(µp,µv)

∂ p
+(v− µv)

∂τ(µp,µv)

∂v
(2)
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Fig. 3. (top) Time to collision theoretical uncertainty. (bottom) Standard
deviation of time to collision measurements of an obstacle at 200m and
20m as a function of image position.

The variance σ2
τ of the time to collision about the point

(µp,µv) is given by the expectation

σ2
τ = E

[

(τ − τ(µp,µv))
2
]

(3)

Simplifying (3) using the Taylor series approximation in (2)

results in

σ2
τ =

µ2
v σ2

p + µ2
pσ2

v

µ4
v

(4)

Equation 4 is the uncertainty for a single point projection p,

due to subpixel pixel quantization error. (4) is a first order

approximation for the time to collision variance in terms

of the Gaussian parameterization of position and expansion

measurements. This variance estimate does not imply that τ
is Gaussian. In fact, τ follows a ratio distribution, for which

the variance approximation should be interpreted as a guide

for the relative accuracy of time to collision measurements as

determined from the second moment of a ratio distribution,

rather than providing any probabilistic guarantees.

The time to collision uncertainty in (4) can also be due to

epipolar geometry errors in addition to pixel quantization

errors. This error is dominated by errors in the epipole

location, however since the derivation assumes without loss

of generality that the epipole is at the origin, epipole errors

are modelled as appropriate increases of σp and σv.

Figure 3 (top left) shows an example of the time to

collision uncertainty model in (4). In this example, a camera

is moving at constant velocity along the optical axis such

that it will collide with an obstacle in 20 seconds. The green

plot shows the true (linear) time to collision along with 2σ
uncertainty as determined from (4) for a fixed point on the

obstacle 1m orthogonal to the optical axis. The blue curve

shows the estimated time to collision assuming 0.25 subpixel

interpolation accuracy and focal length f=1000 pixels. Notice
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that the estimate exhibits a characteristic “staircase” pattern,

which is due to the pixel quantization for p changing faster

than ṗ at large TTC, however the effects of quantization are

reduced as the collision distance closes. Figure 3 (bottom)

shows the standard deviation from (4) as a function of

image position, which shows that for an obstacle at constant

distance, the uncertainty significantly increases nearer to

the focus of expansion and for closer obstacles. Finally,

figure 3 (top right) shows three time to collision uncertainty

plots for a 10m obstacle, 1m obstacle and 1m obstacle

with uncertainty in epipolar geometry. Urban obstacles such

as traffic lights, poles, and signs (not including wires) are

commonly of the order of 1m the largest dimension. This

plot shows that the uncertainty model down to 1m obstacles

are reasonably accurate at approximately 7s to collision.

However, if the epipolar geometry is determined from online

egomotion estimates rather than inertial aiding, then the

location of the epipole may deviate (in our experience) by

approximately 0.5o CEP.

From this analysis, we draw two conclusions. First, in-

ertial aiding is crucial for practical urban flight which may

contain objects smaller than 1m. Second, TTC exhibits an

anisotropic uncertainty based on image position as shown

in figure 3 (bottom), and the TTC estimates are sensitive to

subpixel correspondence errors at larger standoff distances.

Therefore, due to the magnitude of these errors, they must be

appropriately modelled during time to collision estimation to

achieve accuracy necessary for safe flight.

IV. EXPANSION SEGMENTATION

Expansion segmentation is a new approach to visual colli-

sion detection to find dangerous collision regions in inertial

aided video while optimizing time to collision estimation

within these regions. More formally, expansion segmentation

is a grouping of pixels into collision and non-collision

regions using joint probabilities of expanding motion and

color, determined from a minimum energy binary labeling of

collision and non-collision of a conditional Markov random

field in an expectation-maximization framework.

Expansion segmentation (ES) addresses the key observa-

tions determined from the literature review of section II and

the uncertainty analysis in section III-B. First, this method

provides both collision detection and estimation, where the

detection provides an aggregation or grouping of all signifi-

cant expansion in an image. This approach does not assume

known structure or known obstacle boundaries. Second, this

method handles the geometric time to collision uncertainty

discussed in section III-B by incorporating the uncertainty

model into the detection and estimation framework. Third,

this method handles sensitivity to local correspondence er-

rors by using motion correspondence likelihoods rather than

discrete correspondences. The global joint probability of

time to collision and color for the detected danger region

is used to aid in local correspondence. This approach is

a correspondenceless method, as it does not rely on a

priori correspondences as input. Our approach is inspired

by [3][37][38][39][40][41][42][43], but it deviates from the

literature in the explicit use of time to collision uncertainty

model during labeling and region parameterization, and in

the use of correspondenceless motion likelihoods.

Given two images I and I′ with epipolar geometry H and

e as determined from inertial aiding, expansion segmentation

is a minimum energy solution to

E( f ,θ ) = ∑
i∈I

D( fi,θ ;H,e,δi,τc,ts)+ ∑
(i, j)∈N

V ( fi, f j;γ) (5)

over both binary labels fi ∈ {0,1} for each of N pixels

resulting in an image labeling f = { f0, f1, ... fN} in I. The

labeling fi = 0 corresponds to “collision”, and fi = 1 to

“non-collision”. θ = {θc,θs} is a global parameterization for

joint probability of collision labeled features (θc) and non-

collision labeled or “safe” features (θs). These joint probabil-

ity distributions are defined over image feature measurements

z modelled as a mixture of Gaussians, such that for all

measurements zi with label fi = 0:

p(z|θc) = ∑
i

αiexp(−(zi − µi)
T Σ−1

i (zi − µi)) (6)

where αi are normalized mixture coefficients and θc =
{µ1,Σ1, ...,µk,Σk} is a parameterization for a mixture of k

Gaussians of the joint distribution of image measurements z

which have label 0 (“collision”). p(z|θs) is defined similarly

for measurements with label 1 (“safe”). The number k is

determined by the total number of measurements in an

overcomplete manner. This global model makes the strong

assumption that given the current image, measurements

(e.g. TTC and color) are correlated, and this correlation

is reflected in the joint and can be used to resolve local

correspondence ambiguities. This assumption does not hold

in general, and can result in errors, however there is a

fundamental tradeoff between the complexity of the global

model and the promise of real time performance.

D in (5) is the data term which encodes the cost of

assigning label “collision” or “non-collision” fi to i∈ I, given

global parameterization of the joint distribution of collision

feature measurements θc and non-collision θs. This data term

requires the following additional fixed inputs: (i) H and

e which are the rotational homography and epipole from

inertial aided epipolar geometry as discussed in section III-

A, (ii) τc which is a threshold set by the operator which

characterizes the time to collision at which an obstacle

exhibits an operationally relevant risk, such that τ ≤ τc

exhibits “significant” collision danger given the constraints of

the vehicle and mission, (iii) ts is the sampling rate of images

I and I′ for unit conversion of frames to collision to seconds

to collision and (iv) δi(i
′) is a correspondence likelihood

function between pixels i ∈ I and i′ ∈ I′, such that the maxi-

mum likelihood correspondence for i is j∗ = argmax j δi( j),
with correspondence likelihood δ ∗

i . This function provides a

motion likelihood for each pixel i, and may use inertial aided

epipolar geometry to limit the domain of δi. Experimental

details of this function are provided in section V-A.

D in (5) captures the cost of assigning collision labels

to a pixel i given image feature measurements. These mea-

surements include a scalar estimate of time to collision
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given δi(i
′) with τi(i

′) from equation (1), and 3 luminance

and chrominance components of color c. The result is a

measurement vector zi = [τ c], for which we define two

probability distributions as weighted integrals for each i:

P(τi ≤ τc|θc) = max
j

δi( j)
∫ ∞

−∞
p(z|θc)N(µi,Σi)dz (7)

and P(τi > τc|θs) respectively. This models the probability

that τi ≤ τc by integrating the joint PDF p(z|θc) from (6) over

a Gaussian model of uncertainty of zi, where µi = [τi ci] and

Σi = diag(στ ,σc). τi is determined from eq (1) and στ from

eq (4). The result is a likelihood that the time to collision τi

for the ith pixel is “significant” (e.g. < τc) using the derived

uncertainty model for time to collision from section III-B.

Finally, the data term D in (5) takes the form for binary

labels f :

D = (1− fi)P(τi ≤ τc|θc)+ ( fi)P(τi > τc|θs) (8)

Equation (7) which models TTC uncertainty for the data

likelihood in (8) using motion likelihoods δi in a correspon-

denceless framework is a central contribution of this work.

V in (5) is a function which encodes the cost of assigning

labels fi to i and f j to j when (i, j) are neighbors in a given

neighborhood set N ⊂ I × I′. This function represents a

penalty for violating label smoothness for neighboring (i, j).
In this formulation, the interaction term V takes the form of a

Potts energy model with static cues based on the appearance

measurement in the current image [44], forming a conditional

random field:

V ( fi, f j) = γT ( fi 6= f j)exp(−β |I(i)− I( j)|2) (9)

where T is 1 if the argument is true, and zero otherwise.

This term will bias the labeling towards smooth labeling,

with label discontinuities at edges with color differences. γ
is a smoothness parameter which will encode the strength

of the smoothness prior, and β is a measurement variance

for color differences. Experiments in [42] show that the

segmentation is insensitive to the choice of γ and for 4-

neighbor connectivity, and a choice of γ = 25 provides stable

segmentations across a range of scenes.

The minimization of (5) can be performed in an

expectation-maximization (EM) framework to iteratively es-

timate the optimal labeling f given region parameterization

θ (maximization), followed by an estimate of the maximum

likelihood region parameterization given the labeling (ex-

pectation). The region parameterization θ is initialized to

either a uniform distribution or set to the parameterization

determined from the prior segmentation result. Given θ , the

labeling in equation (5) can be solved exactly for a binary

labeling by posing a maximum network flow problem on a

specially constructed network flow graph which encodes (5)

[45][46], for which efficient maxflow solutions are available

[40]. Then, given this labeling, the region parameterizations

θc and θs can be updated using only measurements zi with

labels f = 0 and f = 1 respectively. The Gaussian mixture pa-

rameters in (6) are exactly µi = [τi ci] and Σi = diag(στ ,σc)
from equation (7), with mixture coefficients αi = δ ∗

i . This

mixture takes into account the correspondence likelihood and

uncertainty of τi based on the image position i.

Following convergence of the EM iteration, such that

the labeling does not change significantly or a maximum

number of iterations is reached, the output of expansion

segmentation is the final labeling f ∗ such that labels fi = 0

are “significant collision dangers” and the final collision

region parameterization θ ∗
c . The maximum likelihood time to

collision for measurements within the collision danger region

(all i labeled fi = 0) can be estimated using (θ ∗
c ) as follows:

τ∗i = argmax
j

P(τi( j) ≤ τc|θ
∗
c ) (10)

for which τi( j) is determined from equation (1) such that

correspondence (i, j) determines ṗ. This estimate uses the

joint θ ∗
c to estimate the maximum likelihood τi given the

uncertainty model of time to collision, which provides global

region information to optimize over the local correspondence

likelihood function δi.

V. RESULTS

A. Experimental Setup

Video and inertial flight data were collected by flying a

Kevlar reinforced Zagi fixed wing air vehicle in near earth

collision scenarios with an analog NTSC video transmitter

and a Kestrel autopilot with MEMS grade IMU wirelessly

downlinked to a ground control station for video and teleme-

try data collection. Example imagery collected is shown in

figure 4 (bottom row).

Urban flight data collection is infeasible due to regula-

tory constraints of urban flight and the challenge of col-

lecting dense ground truth. Instead, we created a custom

flight simulation environment based on Matlab/Simulink and

OpenSceneGraph in which to test algorithms for closed

loop visual collision detection, mapping and avoidance. This

provides medium fidelity rendered video of 3D models and

terrain in “Megacity”, ground truth range for performance

evaluation, and a validated model of inertial navigation

system measurements for inertial aiding. Example imagery

from Megacity are shown in figure 4. The ground truth

range to obstacles is not shown, but is used for quantitative

performance evaluation.

The experimental system to test expansion segmentation

implemented the following processing chain:

1) Bouguet intrinsic camera calibration and Lobo inertial-

camera extrinsic calibration [47]

2) Preprocessing for video deinterlacing and RGB to

YUV color space conversion

3) Analog video noise classification to classify noisy

frames during downlink from the air vehicle [48]

4) Scaled and oriented feature extraction using steerable

filters [49][50]

5) Motion likelihood from steerable filter phase correla-

tion [51] with inertial aiding in a correspondenceless

framework

6) Expansion segmentation with maximum likelihood

time to collision estimation (section IV)
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Fig. 4. Proof of concept expansion segmentation results. Collision detection shown as semi-transparent overlays with yellow, orange to red color encoding
the time to collision estimate. (top) Descend and climb performance in Megacity (middle) Bank turn performance in Megacity (bottom row) Qualitative
expansion segmentation results on operational video and telemetry. See the associated video for additional results.

The motion likelihood in step 5 is the implementation of δi

in eq 5. This approach uses phase correlation of quadrature

steerable filter responses of two images I and I′ [51],

using inertial aiding to provide epipolar lines as constraints

for correspondence. Phase correlation is implemented as a

disparity likelihood within a fixed disparity range (dmax)

and orthogonal distance threshold (ρmax) from epipolar lines.

The orthogonal epipolar projection length ρ of p′ onto the

epipolar line l′ is

ρ2 =

(

p′T F p
)2

‖ê3F p‖2
(11)

ρmax is chosen experimentally to reflect the uncertainty in the

inertial aided epipolar geometry, and dmax is chosen relative

to τc. Phase correlation is computed for all epipolar inliers

p′ using bilinear interpolation of features at integer disparity

along epipolar lines. In eq 11, ê3 is the cross product matrix

for e3 = [0 0 1]T and F is the fundamental matrix where

F = K−T EK−1. The result is a motion likelihood function

δp(p′) as determined from phase correlation over all inliers

(p′).

Experiments with the Kestrel autopilot and MEMS grade

IMU showed that the rotational homography H can be

directly computed from inertial measurements, however posi-

tion errors due to accelerometer biases and GPS uncertainties

contribute significant error to the epipolar geometry. In this

experimental system, we use a random sample of SIFT

feature correspondences and sparse bundle adjustment [52]

initialized with the inertial measurement to improve the

essential matrix estimate [53].

All results in this section were generated using the fol-

lowing parameters: 320x240 imagery, 9x9 steerable filter

kernels, N is 4-neighbor connectivity, ρmax = 0.5, dmax = 24,

0.5 subpixel disparity, γ=25, θ is initialized to uniform

distribution, and θ in (7) is implemented as a joint histogram

with fixed bin width rather than mixture of Gaussians. In

our experience, this is an suitable approximation which

does not significantly impact performance. The experimental

system is implemented in C++ with Matlab MEX wrappers

for data visualization, and converges in 5-12 EM iterations

in approximately 5 seconds per image on a 2.2GHz Intel

Core 2 Duo. In our benchmarks, δp computation of motion

likelihood dominates runtime performance and can be further

optimized.

B. Simulation Results

Figure 4 shows expansion segmentation results on sim-

ulated and operational flight data. Figure 4 (top) shows

quantitative performance evaluation of a descend and climb

scenario in the Megacity simulation environment. The per-

cent misclassification is the percentage of pixels incorrectly

classified as either dangerous (false positive) or safe (missed

detection) for a τc = 10s relative to the ground truth. This

performance metric is widely used in the evaluation of

stereo algorithms [54] and is adapted here for evaluation

of time to collision. Expansion segmentation results are

shown at three points in the scenario, where the color of the

semi-transparent overlay encodes the mean time to collision

for the danger region (yellow=far, red=close). The large

percentage misclassification at (1) is due to the classification

of the road underneath the overpass as dangerous, as it

has few strong features for feature correspondence. The
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misclassification at (2) is due pixels at the border having

no motion measurement resulting in a smoothing of the

image border into the foreground. Figure 4 (middle) shows

a bank turn scenario in Megacity with misclassifications due

to smoothing at the image border. In both scenarios, large

narrow spikes in misclassification are due to the expansion

segmentation not yet detecting that a large foreground region

is dangerous due to time to collision uncertainty. Smaller

misclassifications are due to motion ambiguity from periodic

features, oversmoothing at the image edges where there are

no motion measurements and time to collision uncertainty

near the epipole.

All results are best viewed in the associated video, which

also includes additional results not shown in figure 4. The

video shows an expanding central square in a uniform

random and sparse binary image, which demonstrates that

motion only without any color information can be used

for collision detection, and smoothness in the conditional

random field can be used to “fill in the gaps” in the sparse

binary image rather than detecting the white dots only. Next,

the video shows a gray square offset from the checkerboard

background by a fixed distance such that the gray square is

expanding at a faster rate than the background. In this exam-

ple, the joint region parameterization θ for color and motion

is used to successfully segment the interior of the gray

square which has no contrast for feature correspondence.

The remainder of the video shows qualitative expansion

segmentation videos of the scenarios described above.

C. Flight results

Figure 4 (bottom) shows qualitative results for operational

flight data. First, data was collected on a runway during

takeoff, and results show that the road, trees, fence and

red tarp all exhibit a significant collision danger while the

central tree and right mountains are set back in the scene

and therefore do not exhibit immediate collision danger and

are correctly detected as “safe”. Note that collision dangers

are defined as the time to intersect an infinite image plane,

so peripheral trees and stop sign are correctly detected as

potential collisions. Also, note that at no time is a ground

plane assumption used to generate these results, and for an

aerial vehicle the ground is a legitimate collision danger.

The time to collision for these regions is dominated by the

ground plane which has a small time to collision to intersect

the infinite image plane, so therefore the color of the semi-

transparent overlay is consistently red. The video shows time

to collision with τc = 5s and τc = 8s showing that the trees

are detected earlier for τc = 8s. Quantitative evaluation was

not performed due to a lack of ground truth for the flight

sequences.

Finally, data was collected during a true collision event

of a single high contrast obstacle with a human pilot in the

loop for safety. The expansion segmentation results are best

viewed in color and magnified in the PDF or in the associated

video. This result shows that the collision danger regions are

successfully segmented in full 6-DOF motion from a small

UAV, and thus demonstrating proof of concept.

VI. CONCLUSIONS AND FUTURE WORK

The results demonstrated in simulation and on flight data

are preliminary and show results only on a limited dataset,

however they successfully prove the concept that expansion

segmentation is feasible approach for visual collision de-

tection and estimation on operational data from a small air

vehicle. Additional test and evaluation is needed including

urban driving as a surrogate for flight data and extended

urban simulations, along with quantitative performance eval-

uation on long runs to determine false alarm and detection

rates. Furthermore, comparative results are needed to show

performance relative to other methods such as the approach

described [53], however the lack of a standard inertial aided

dataset makes direct comparisons difficult.

Finally, the expansion segmentation approach is promising

for other applications which may be explored, including

target pursuit which requires nulling the effects of expan-

sion, and expansion segmentation due to zoom for fore-

ground/background segmentation.
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