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Abstract— The paper describes the development and imple-
mentation of the Visual Threat Awareness (VISTA) system, its
integration with the Multi-layer Architecture for Trajectory
Replanning and Intelligent plan eXecution (MATRIX) for
autonomous intelligent control of Unmanned Aerial Vehicles
(UAV), and performance evaluation of the integrated system
through flight tests. The VISTA system generates information
on the threats and obstacles in real-time, and passes it on
to the MATRIX system that makes mission-related decisions
and generates new waypoints and a trajectory that safely
avoids the obstacle. The VISTA system combines binocular
visual stereo, perceptual organization, graph partitioning and
feature tracking for a passive system to enable real-time
obstacle detection. Computational stereo performance has
progressed such that there now exist several commercial or
open source implementations that operate at frame rate, but
suffer from well known correspondence errors. We show
that introducing a global segmentation step after commodity
stereo can increase robustness and leverage existing stereo
software. The global segmentation step is based on a graph
structure appropriate for collision detection, human vision
inspired perceptual organization and graph partitioning using
the minimum s-t graph cut. This system has been prototyped
using Sarnoff Corp’s Acadia I vision processor to enable
640x480@10Hz operation on embedded avionics. We describe
VISTA system theory and show proof of concept and flight
experiment results of the integrated MATRIX/VISTA system
on Georgia Tech’s GT-Max autonomous helicopter.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are envisioned as
an integral part of future military forces. Large scale

UAVs will perform autonomous tasks such as high-altitude
reconnaissance, Close Air Support, Suppression of Enemy
Air Defenses, and aerial refueling. Small scale UAVs will
enable on-demand intelligence, surveillance and reconnais-
sance tasks including: ”over the hill” reconnaissance, ”perch
and stare” surveillance, biological and chemical agent de-
tection, precision strike missions, and battle damage assess-
ment. Such tasks require that a UAV exhibit autonomous
operation including collision avoidance. UAVs flying “nap
of the earth” below the treetops risk collision with obstacles
whose position cannot be guaranteed as known before
flight. UAVs must include situational awareness based on
sensing and perception of the immediate environment to
locate collision dangers and plan an appropriate avoidance
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path [5]. Hence the desired autonomous intelligent control
architecture for UAVs integrates threat/obstacle awareness
with intelligent decision making, path planning and trajec-
tory generation to achieve effective threat avoidance and
mission completion. This is a complex problem that has not
been successfully solved yet. If, in addition, threat/obstacle
avoidance needs to be accomplished during a high-speed
flight, in low visibility, cluttered environment, and under
subsystem and/or component failures, the problem becomes
truly formidable.

Sensors considered for collision detection include active
or passive sensors. Active RADAR or LIDAR (light detect-
ing and ranging) sensors for manned aircraft are currently
under investigation for use in UAVs [6], [7]. These sensors
provide resolution appropriate for wire detection, but exhibit
sparse measurements, non-covert operation due to emitted
radiation, and a form factor and power requirement that
does not currently scale to the smallest micro air vehicles
(MAVs). Passive sensors based on visual electro-optical
(EO) or forward looking infrared (FLIR) are promising due
to low size weight and power requirements and a lack of
emitted radiation, but require significant image processing
to detect obstacles. Bhanu et al. [5] argue for a maximally
passive system that combines narrow field of view active
sensors for wire detection with wide field of view passive
stereo sensors for peripheral visibility. This paper proposes
a passive stereo system for visual obstacle detection suitable
for integration into such a maximally passive system.

In this paper, we describe the development and im-
plementation of the Visual Threat Awareness Avoidance
(VISTA) system for passive, stereo image based obstacle
detection, its integration with the Multi-layer Architecture
for Trajectory Replanning and Intelligent plan eXecution
(MATRIX) for autonomous intelligent control of UAVs, and
performance evaluation of the integrated system through
flight tests. The VISTA system combines block matching
stereo computed on the Acadia I vision processor designed
by the Sarnoff Corporation [8] with image segmentation
based on a special purpose graph representation appropriate
for collision detection, human vision inspired perceptual
organization and efficient graph partitioning based on the re-
cursive minimum s-t graph cut. This segmentation provides
a means to increase robustness to stereo correspondence
errors as will be described in this paper, and provides
constraints suitable for motion planning and avoidance. This
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paper will describe system theory, and show experimental
results from a VISTA prototype flight tested on Georgia
Tech’s GT-Max autonomous helicopter [9].

II. MATRIX SYSTEM ARCHITECTURE

We recently completed a DARPA Phase II SBIR, that
was also a part of the DARPA Software Enabled Control
(SEC) Program. The objectives under the project were
as follows: (i) To study the issues arising in the context
of autonomous control of Unmanned Aerial Vehicles and
develop a multi-layer architecture for autonomous control of
UAV; (ii) To implement the architecture on autonomous he-
licopters; and (iii) To develop and implement VISTA system
(Visual Threat Awareness). Under the project we developed
a new Multi-layer Architecture for Trajectory Replanning
and Intelligent plan eXecution (MATRIX) system, Figure
1, and integrated it with VISTA to achieve real-time threat
detection and avoidance under faults and failures. The main
role of the MATRIX system is to integrate threat detection
algorithms with on-line path planning and trajectory gener-
ation within an effective multi-layer architecture for pop-up
threat avoidance under subsystem and component faults and
failures.

An architecture that integrates the MATRIX and VISTA
systems is referred to as the Integrated Motion Planning,
Awareness and Control Technology (IMPACT) system, and
integrates pop-up threat detection with on-line motion plan-
ning for aggressive maneuvering to achieve mission objec-
tives for UAVs under different threats and dynamic changes
in the environment. The IMPACT architecture is shown in
Figure 2. Different layers of the MATRIX architecture are
described next.

A. Failure Detection, Identification and Reconfiguration

The main role of this layer is to monitor the health
of UAV subsystems and components, detect faults, fail-

MATRIX System

VEHICLE

Aggressive Maneuvers Library
IMPACT System

VISTA System

Fig. 2. Structure of the Integrated Motion Planning, Awareness and
Control Technology (IMPACT) System ( c

�
1999-2005 Scientific Systems

Company, Inc.)

Add−on Signal Actuator Positions

AIRFRAMEActuators
+

+

Observer for Actuator 1

Baseline Control Signal

Observer for Actuator 2

Observer for Actuator 3

Commands

Global FDIR &
Disturbance Estimation

Decentralized FDI

Aircraft State

Observer for Actuator N

Actuator Commands

Adaptive Retrofit
Reconfigurable

Controller

Baseline Controller

Baseline Flight Control System

FLARE System

...
Fig. 3. Structure of the Fast on-Line Actuator Reconfiguration Enhance-
ment (FLARE) System ( c

�
1999-2005 Scientific Systems Company, Inc.)

ures and structural damage, and reconfigure the controls
to achieve effective failure and damage accommodation
while maintaining or gracefully degrading the desired flight
performance.

We have developed several efficient algorithms for effec-
tive FDIR in the presence of actuator failures, control effec-
tor damage, and damage-generated disturbances. The main
architecture that was developed is referred to as FLARE
(Fast on-Line Actuator Reconfiguration Enhancement), and
is shown in Figure 3. It is seen that the actuator health
status is monitored by multiple decentralized FDI observers,
while the damage conditions and disturbances are detected
by the Global FDI system. The FDI information is passed
on to the retrofit reconfigurable controller that assures fast
reconfiguration and system stability. The main features
of the FLARE system are as follows: (a) Fast on-line
detection of failures and battle damage using low-order ob-
servers and a small number of failure-related parameters. (b)
Highly robust adaptive reconfigurable control for failure and
damage accommodation. (c) Capability to handle multiple
failures and damages, as well as failure recoveries. (d) The
reconfigurable controller is implemented in a retrofit fashion
which allows the baseline flight controller to be retained. (e)
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First- or second-order actuator dynamics and position and
rate limits on the control effectors are explicitly taken into
account in the algorithm. The FLARE system was recently
evaluated through piloted F/A-18 aircraft simulations at
Boeing and NASA Dryden yielding excellent results in the
presence of severe flight-critical failures [2], [4].

The FLARE architecture was also implemented under the
DARPA SEC program to a small autonomous helicopter.
We developed a new baseline helicopter controller (Heli-
Con) controller that combines in an innovative way partial
feedback linearization and sliding mode control with zero
dynamics stabilization using outer-loop LQR controller,
Figure 4. The controller was extended to add a retrofit
module for accommodation of loss-of-effectiveness failure
of flight control actuators, and the extended algorithm was
flight tested using Georgia Tech’s RMax helicopter under
the DARPA SEC Program.

B. Achievable Dynamic Performance (ADP)

The main distinguishing feature of the MATRIX archi-
tecture is the Achievable Dynamics Performance (ADP)
block. ADP is defined as the maximum performance that
the vehicle can achieve under different faults, failures, and
external disturbances in a dynamically varying environment.
In the MATRIX architecture, an ADP measure is calculated
on-line at the inner-loop control level, and passed on to
the higher hierarchical levels that make appropriate changes
to reflect the new lowered capabilities of the vehicle. We
implemented the ADP concept under the DARPA SEC
program by on-line identification of the position limits of
the helicopter rudder, and ADP measure calculation based
on this estimate. This measure was used by the higher
hierarchical layers as described below.

C. Autonomous Trajectory Generation (ATG) Layer

The role of this layer is to fit a feasible trajectory
through the way-points even while satisfying the state,
control input, and spatial constraints. Trajectory generation
is commonly based on minimization of a given criterion
(e.g. time between the way points, fuel consumption, or
low exposure to known stationary threats), and can be
generated either on-line or off-line. In the case of failures,
upsets, or other anticipated or unanticipated events, the

path planning layer automatically reconfigures the desired
path by modifying the way-points, while the trajectory
generation layer fits a feasible trajectory that is achievable
under the circumstances.

We have developed several trajectory generation algo-
rithms based on splines and higher-order polynomials.

D. Autonomous Path Planning (APP) Layer

The role of this layer is to generate the motion plan
for the overall mission, and compute spatial and other
constraints needed for the design of the desired trajectories.
Many of the routes and constraints can be computed off-
line to cover different situations, including the nominal case
and a set of anticipated events, and stored in memory. The
constraints are computed in the form of safe set bound-
aries around the way-points. We have developed the path-
planning algorithms based on the following techniques: (i)
Voronoi diagrams and Delaunay triangulation; (ii) Mixed-
integer/LMI algorithms; and (iii) Rapidly-exploring Ran-
dom Trees (RRT). The latter approach is currently being
implemented under a NASA Ames Phase II STTR with
UC Berkeley.

E. Autonomous Decision-Making (ADM) Layer

This layer has the information about the overall mission
objectives and constraints. This information, in conjunction
with the sensory and ADP information and situational
awareness, is used to make appropriate decisions as trade-
offs between the mission success and vehicle survivability.
This layer is responsible for collision avoidance, conflict
resolution, mission retasking, and goal reassessment.

Under the Final Demo of the DARPA SEC Program,
we demonstrated the MATRIX system through flight tests.
The ADP measure was used to make a decision to retask a
mission, recalculate achievable paths after a vehicle failure
and fit a new feasible trajectory between the waypoints. This
is shown in Figure 5.

III. VISTA SYSTEM ARCHITECTURE

The Visual Threat Awareness (VISTA) system is an
approach to collision obstacle detection based on real time
stereo, graph partitioning, perceptual organization and fea-
ture tracking. A block diagram of the system is shown
in figure 6. A stereo pair of cameras is mounted forward
looking on the UAV to monitor the region through which
the UAV will fly. On each iteration, imagery is captured
from a calibrated stereo pair of cameras and passed to
the Acadia I vision processor which computes a disparity
map. The disparity map is proportional to the scene depth,
or distance to points within the scene. The imagery and
disparity maps are foveated using a log-polar mapping
compression and fused into an affinity graph representation
using perceptual organization techniques. The affinity graph
is recursively bipartitioned using a minimum s-t graph cut
resulting in an estimate of � regions within the imagery.
Statistics are computed for each region, and those that pass



Fig. 5. Final Demo under the DARPA SEC Program: The control system
first replans the trajectory to avoid a pop-up threat in the no-failure case.
Following that, a rudder lock-in-place occurs that changes the position
limits; this is detected by the Limit Detection System that calculates a
new ADP measure and passes this information to the ADM layer that
makes a decision to retask the mission (follow a larger-radius circle); this
information os passed on to the APP layer that calculates new waypoints,
and the ATG layer that fit a new trajectory through these waypoints.
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Fig. 6. Visual Threat Awareness (VISTA) system block diagram

a statistical test are reconstructed using stereo triangulation
and represented with a bounding ellipse. These regions are
tracked using a Kalman filter and those regions with a
given tracking confidence above a threshold are labeled
obstacle hypotheses. Obstacle hypotheses that fall within
the flight path are labeled collision obstacle hypotheses
with the closest collision obstacle labeled nearest collision
obstacle. Collision obstacle hypotheses are measurements
of the position and size of possible collision dangers which
provide dynamic constraints for avoidance.

A. Computational Stereo

Computational stereo is the process of extracting three-
dimensional scene structure from two or more images taken
from distinct viewpoints [10]. This computation requires
a three step process of calibration, correspondence and
reconstruction.

Stereo calibration is the process of measuring the param-
eters which define the camera intrinsics, stereo intrinsics
and stereo extrinsics. The camera intrinsic parameters or
camera intrinsics define a transformation between 3D scene

Fig. 7. Tradeoff between stereo threshold and correspondence qual-
ity. (left) Grayscale imagery (middle) Disparity map with low thresh-
old (right) Disparity map with high threshold. Dark gray=far,light
gray=close,white=undefined

coordinates and 2D image coordinates that take into account
uncertainties introduced in the camera manufacturing pro-
cess, geometric lens distortion and other nonlinearities. In
this system, camera intrinsic calibration is a coupled process
of radial lens distortion correction and camera projection
matrix estimation using the approach described in [1].

Stereo correspondence is the process of establishing
matching points in stereo imagery. A point at a finite
distance from a stereo pair will exhibit a disparity or change
in position between matching points in each image due to
the change in viewpoint. Stereo geometry constraints the
position of matching points to be along epipolar lines in
the image, and calibrated stereo pairs in epipolar alignment
further constrain the position to be along an image scanline.
Stereo correspondence techniques attempt to find matching
points in the left and right imagery by exploiting constraints
such as epipolar geometry, ordering, brightness constancy,
edge consistency and uniqueness [10]. However, this match-
ing can be ambiguous when features in one image do not
have an identical and unique match in the other image.
This may be due to viewpoint (foreshortening), multiple
feature match (regions of low contrast, periodic features)
or no feature match (specular reflections, occlusion, mini-
mum distance violation). Many correspondence techniques
include a matching confidence threshold to discard poor
matches, however as shown in 7, the quality of the corre-
spondence is sensitive to this threshold. The low threshold
disparity map in 7b introduces severe matching errors in
the sky due to low contrast, but exhibits excellent smooth
correspondence on the ground. The high threshold disparity
map in 7c removes the sky errors, but also removes some
correct correspondence on the ground. It is unclear how to
choose this threshold in general, without introducing false
alarms or missed detections in an unconstrained outdoor
environment. This point will be revisited in the next section.

In this system, stereo correspondence is computed on
the Acadia I vision processor using a sum of absolute
differences (SAD) block matching approach along epipolar
scanlines, with left/right consistency checking and maxi-
mum 32 disparity search [8]. SAD estimates are thresh-
olded, and those points with SAD measure above this
threshold define a disparity map which is proportional to
scene depth using stereo reconstruction. The Acadia I vision
processor is dedicated to stereo processing, resulting in
640x480 disparity map computation at 23Hz. Other similar



Fig. 8. Example of foveation using the log-polar mapping

commercial approaches that achieve similar performance
using variants of the block matching technique include
Videre Design, Point Grey, Tyzx.

Finally, stereo reconstruction is the computation of depth
from disparity determined from correspondence and stereo
geometry determined from calibration This reconstruction
uses standard stereo triangulation to recover 3D scene
structure from 2D projections [11], resulting in depth mea-
surements to points in the scene, which provides collision
distance for obstacle detection.

B. Foveation

Foveation refers to a space variant image representation
with a high resolution central region or fovea surrounded
by a lower resolution periphery [12], [13]. In the context of
collision detection, foveation provides the benefits of com-
pression and focus of attention. Collision detection systems
exhibit a tradeoff between sensor resolution for detection
of small obstacles, and detection time requirements for
safe operation. Computational complexity is proportional
to sensor resolution, so limited computational resources
require that computation is focused appropriately. Foveation
retains high resolution in the image center, which has a
high likelihood of containing a collision obstacle since the
image center of a forward looking sensor can be actively
aligned with the current heading. Foveation also reduces the
resolution in the periphery which may contain an obstacle,
but a low likelihood of containing a collision obstacle.
Therefore, foveation allows the system to focus available
computational resources on those spatial image regions that
are likely to contain collision dangers. The lower resolution
periphery provides image compression that is appropriate
for collision detection, and focuses computation on the
image center which is likely to contain collision dangers.

Foveation can be implemented using a log-polar mapping
[13], such that the space variant resolution is proportional to
the log of the distance from the image center. An example of
the log-polar mapping is shown in figure 8. Pixels in figure
8a are mapped to nearest log-polar sectors with centroids
represented as circles in figure 8b, such that the median
grayscale intensity represents the entire sector in the log-
polar mapping as in figure 8c.

C. Segmentation

Segmentation can be defined as the process of labeling
an image such that features with equal labels are “simi-
lar” and features with unequal labels are “dissimilar”. A

labeling defines groupings of pixels into regions such that
pixels with a common label belong together in some sense,
and pixels with different labels do not. In the context
of obstacle detection, segmentation provides hypothesized
obstacle size and obstacle boundaries. Segmentation groups
pixels into regions which are used to define the extent of
an obstacle hypothesis for motion planning. Hypothesized
obstacle boundaries are boundaries between segmentation
labels, which can be used to compensate for the stereo
correspondence errors described in section III-A by ignoring
disparity within groups and enforcing the edge consistency
constraint along a label boundary. This will be revisited in
the next section.

The segmentation problem can be posed formally as an
energy minimization problem [14]. Assume that there exists
a finite set of points �������	��
����
�������
������ that fall within
the field of view of the sensor for which measurements can
be taken. For each point ��� , a sensor can capture a mul-
tidimensional measurement �������������! "��
# $�
�������
� �%&� ,
such that the total set of all measurements for all points is' �(�)�*���+�,�-
,�*����!�-
�������
,�*�����.��� . Each measurement is
some descriptive feature of ��� that may include intensity,
texture, color, intensity gradient, motion, depth or others. A
labeling /0�1�2� is a mapping from � to 3 where 3 is a finite
set of labels. An energy optimal labeling /+4 minimizes the
energy function 5 [15]56�7/8�9�;:<>=@?BA < �7/ < �+C :D <>E F�G�= � H <)E F �7/ < 
,/ F � (1)

/ 4 �JI)K�LNMPORQS 56�7/8� (2)

A < is a function which encodes the cost of assigning label/ < to � , which represents prior knowledge about the true
labeling of � .

H <>E F is a function which encodes the cost
of assigning label / < to � and a different label / F to T
when ���	
�T@� are neighbors in a given neighborhood setUWV �YXZ� . This function represents a penalty for violating
label smoothness for neighboring ���+
�T@� . Solutions /+4 to the
energy minimization problem are difficult to find in general
since (1) can be non-convex in a high dimensional space.

In this application, we approach the energy minimization
in (2) as a recursive maximum network flow problem. A
network flow graph is defined as a directed graph [\�� H 
�5]
,^_� with nodes

H
, edges 5 and edge weights ^ .

Edge weights `a��b between nodes c and d are interpreted
as capacities, and certain distinguished nodes e and f in

H
are interpreted as terminal nodes. The maximum network
flow problem is that of determining the maximum flow
of some commodity between terminal nodes such that the
maximum flow on any edge is less than or equal to capacity
[16]. Using the Ford-Fulkerson theorem, it can be shown
that a solution to the maximum network flow or maxflow
problem is also a solution to the minimum graph cut or
mincut problem [17]. The mincut on a network flow graph
defines a graph bipartition which is equivalent to a binary
labeling. This binary labeling is an exact solution to the



energy minimization in (2) assuming that A < is equal to
the terminal edge capacities and

H <>E F is equal to the edge
capacities such that

H <>E F is a regular function as defined in
[15]. Recursive application of the binary labeling generates
a � -labeling such that the maximum of the inter-partition
flows is minimizes among all possible partitions of [ into
the same number of partitions [18].

This approach requires that imagery be abstracted to
a network flow graph representation suitable for obstacle
detection. Graph nodes and graph edges are defined using
the log polar mapping from section III-B. Graph edge
weights are encoded using perceptual organization heuristic
of similarity such that the edge weight `g��b or node affinity
between adjacent nodes c and d can be defined as:

`h��bi�kj:l�m �on l!p ��b (3)

p ��bi�rq�sutwvZx �yM]I)sz�#�y l �yc{� x  l �|do�#�-
#} l � x } l � ~>� l � (4)

Equation 4 is a nonlinear model for feature smoothness,
which is similar to the approach by Shi and Malik in [19].
Each node c has A measurements  ��yc{�����  ��# $0�����# j��|� ,
with the measurement  l �yc{� corresponding to the pu�y�
measurement for the c �y� node, such as intensity, color,
texture, depth or others. The feature smoothness between
nodes c and d is parameterized by } l and

� l which define
the mean and standard deviation for smooth feature changes.
The resulting node affinity is a linear combination of each
feature smoothness with weight n l . For this application,
features include median intensity and median disparity.
Graph terminal nodes encode the hypothesis that certain
nodes represent foreground and background. Therefore,
those nodes that exhibit depth contrast, and are near to
the sensor are likely to be foreground and those further
from the sensor are likely to be background [1]. Finally,
the minimum cut of the network flow graph is computed
using a new polynomial time augmenting path approach
proposed by Boykov and Kolmogorov [20]. Additional
issues of oversegmentation, perceptual organization and
Rubin’s rules, terminal node assignment, recursion stopping
criterion, coefficient n l learning and single node groups are
addressed in [1].

Example segmentations are shown in figure 9 (row three),
where regions of constant color have the same label. An
example of the first and last steps in the recursive bipartition
are shown in figure 6.

D. Obstacle Detection and Tracking

Obstacle detection and tracking includes boundary statis-
tics, region reconstruction and obstacle tracking. The � -
partition from section III-C defines a set of � -regions in
the image which must be reconstructed in 3D using the
stereo geometry and disparity. For each region, we compute
boundary statistics for measurements about the boundary
of each region. Those regions with statistics above a given

threshold are reconstructed in 3D using the boundary dispar-
ity. Region centroids are used to determine if the region falls
within the tracking volume. Such regions are parameterized
by the bounding ellipse, and tracked using a Kalman filter.

Boundary statistics can be used to compensate for stereo
correspondence errors by ignoring disparity in region interi-
ors and by checking the edge consistency constraint along
region boundaries. Boundary statistics are those statistics
which are computed over all feature measurements at the
boundary of a given region. As discussed in section III-
A, noisy stereo disparity estimates may be introduced due
to poorly chosen stereo threshold or stereo correspondence
errors from scene geometry. Noisy disparity results in incor-
rect 3D reconstruction which can generate false alarm obsta-
cles, or missed obstacles altogether. Stereo correspondence
is strongest in areas exhibiting intensity edges correspond-
ing to local maxima in intensity gradients. By nature of the
segmentation process and the formulation of node affinity,
the interior of a segmented region will exhibit smooth
changes in feature measurements, and the boundary will
exhibit violations of smoothness. Therefore, he boundary
of a segment will exhibit stronger correspondence than the
interior, which means the disparity interior to a region can
be discarded in favor of the disparity at the boundary.
In other words, disparity from regions of low contrast
is ignored. The edge consistency constraint is commonly
used in computational stereo to constrain the search for
correspondence [21], such that disparity along intensity
edges should be smoothly varying. Any violation of the
edge consistency constraint is an indication of incorrect
correspondence. Therefore, we define an edge consistency
check in terms of disparity variance along a boundary, such
that a region with a boundary variance above a threshold
violates edge consistency and is discarded.

Those regions which pass the edge consistency check are
reconstructed in 3D using the bounding ellipse of the region.
Bounding ellipses which fall within a given tracking volume
are labeled obstacle hypotheses and bounding ellipses which
fall within a given collision volume are labeled collision
obstacle hypotheses. Those ellipses outside the tracking
volume are ignored for computational efficiently, The el-
lipse parameters for obstacle hypotheses are then passed
as measurements to a Kalman Filter for obstacle tracking
[22]. Each obstacle is tracked independently such that
obstacles which enter and exit the tracking volume spawn
or destroy their associated filter. Measurement assignment
is determined by comparing the measurement to all ob-
stacles within a specified gating distance. Measurements
are assigned to the obstacle with the minimum error in
ellipse parameters and closest mean intensity. The result
is a state estimate �� % and state estimate covariance ��% for
the bounding ellipse of each obstacle in the inertial frame of
the vehicle. Detected obstacles within the collision volume
are then passed to the control system for motion planning.
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Fig. 9. VISTA sample imagery and flight experiment results for collision detection scenarios. From top to bottom: calibrated grayscale imagery from
left camera, foveated disparity map (dark gray-far, light gray=close, white=undefined), k-partition segmentation (solid color=region), obstacle detection
(yellow ellipse=tracked obstacle, green ellipse=nearest collision obstacle, green text=collision distance to nearest collision obstacle), obstacle detection
performance evaluation

IV. FLIGHT EXPERIMENTS

Flight experiments for the VISTA system were per-
formed on the Georgia Tech GT-Max autonomous heli-
copter platform [9], outfitted with the VISTA flight com-
puter and stereo cameras. Flights 1,4,5 had the helicopter
autonomously approach a ”sign” obstacle, which was a
40”x30” piece of white foamcore mounted on the top of
a 21’ tall, 0.75” diameter pole. Flights 2,3 replaced the
”sign” with a ”pole” obstacle, which was a 90”x20” piece
of black foamcore representing the top section of a 20”
diameter telephone pole. The helicopter approached the
obstacles at a constant velocity and altitude, with vari-
able heading (north/south or east/west), forward speed and
ambient lighting for each flight. Flight experiments were
performed in a field in McDonough GA that included hay
bales, trees, tarpaulins, gantry and ground station vehicles
in the background.

Figure 9 shows sample imagery and processing results

from five flight experiments. Flight data includes calibrated
grayscale imagery, disparity maps, segmentation results and
obstacle detection. The obstacle detection imagery shows
that the nearest collision obstacle is detected as shown with
a green ellipse, but also additional obstacles are detected as
shown with yellow ellipses. These obstacles include cars,
hay bales, tarpaulins and a gantry in the background that
are in fact obstacles which are corrected detected by the
system.

Figure 9 also show a graph of obstacle detection perfor-
mance. The ground truth position of the collision obstacle
was captured after each flight, and the obstacle estimation
error was computed by comparing the tracking estimate
of the green ellipse centroid to the ground truth obstacle
centroid. The detection error graphs show the Euclidean
distance between the estimated position of the obstacle ��
and the ground truth position � , such that the error at time
index cP5Z����� � x ��6� . The position estimation error is



shown in blue. The red plot shows the predicted estimation
error given the ground truth distance to the obstacle and
the known resolution of stereo. Stereo estimation error
reflects the nonlinear range resolution of stereo due to pixel
quantization, such that the uncertainty in range for a single
disparity is proportional to the square of the range. At
time index c , the helicopter with position � � is at range� � �;� � x � � � from the obstacle. The stereo range resolution
at distance � � is given by��� � � � �9� � �� / (5)

for a known baseline
�

in meters and focal length / in
pixel units. This range resolution is the expected uncertainty
for a single disparity which is due to pixel quantization
error and stereo geometry. A correct detection result should
track the error 56� � � �]� ~ ��� � � � � , where 5 is the range
uncertainty due to a two pixel disparity error. The error5 is also a function of the vertical and horizontal position
error, but these errors is dominated by range uncertainty for
the distances considered in UAV flight, and are negligible
in practice [23]. The plots show that the position estimation
error does track 5 , and at times improves on the expected
error due to subpixel disparity estimates from tracking and
from disparity averaging.

The obstacle detection performance results include pro-
cessing results for the entire run, including the period in
which the helicopter is pitching down during acceleration,
and pitching up during halt. The plots begin at the first time
index in which the obstacle is detected, which shows that
there are no false alarms. Runtime performance for each
flight ranged from 5Hz-10Hz, with variations due to scene
complexity affecting the total number of regions k of the
recursive bipartition. Future work includes extending the
analysis to multi-obstacle scenarios, additional trajectories
and more complex urban environments.
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