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Abstract

We describe an algorithm for graph matching which pre-
serves global topological structure using an homology pre-
serving graph matching. We show that for simplicial ho-
mology, graph matching is equivalent to finding an optimal
simplicial chain map, which can be posed as a linear pro-
gram satisfying boundary commutativity, simplex face inter-
section and assignment constraints. The homology preserv-
ing matching provides (i) globally consistent matching with
higher order simplex weights, (ii) match verification using
topological invariants, and (iii) topological constraints to
improve any geometric matching approach. Vision appli-
cations require ’topologically rich’ graphs, so we describe
a general simplicial complex construction such that salient
image structures correspond to homology groups. Finally,
we evaluate performance on random graphs and demon-
strate use of homology preserving subgraph matching for
object matching applications.

1. Introduction
Graph matching is the problem of finding correspon-

dences between graphs such that relational structure is pre-
served. This is a fundamental problem in computer vision,
machine learning and pattern recognition since structured
data in widespread in such forms as part based object recog-
nition, image grammars, structured prediction, and shape
representations. For recent surveys of graph matching, see
[1, 2].

Many structure preserving correspondence problems in
vision can be posed a weighted graph matching prob-
lem. Given two attributed graphs G = (V,E, α), G′ =
(V ′, E′, α′), let X be an |V | × |V ′| permutation matrix,
such that X(i, i′) = 1 if nodes (i, i′) are matched and zero
otherwise. Let W be an |V ||V ′| × |V ||V ′| weight matrix
determined from attributes (α, α′) such that wii′,jj′ ∈ R
encodes the compatibility of matching (i, i′) and (j, j′). Let
x be an an |V ||V ′| × 1 columwise vector representation of

X such that xij = X(i, j) and xT
i is the ith row and xj is

the jth column. Then,

x∗
QAP = argmax xTWx

s.t. 1Txj = 1
xT
i 1 = 1

xij ∈ {0, 1}

(1)

The optimization in (1) is an instance of a quadratic assign-
ment problem, such that x∗

QAP is a maximum weight edge
preserving matching where (u, v) ∈ E ⇔ (X(u), X(v)) ∈
E′ [3].

The optimization in (1) is an integer quadratic program
which is NP-complete, so approximate solutions are nec-
essary. Approximation algorithms that have been explored
in the literature include combinatorial search [3], graduated
assignment [7], spectral [9, 6], semidefinite programming
[8], and graph edit distance [4]. These approaches require
a construction of the quadratic objective weights W which
is quadratic in the size |V ||V ′|. Robust performance has
been demonstrated [7, 6], but practical problem sizes are
limited to hundreds of nodes due to the quadratic objective,
and weights are limited to pairwise interactions.

Recent work has focused on geometry preserving lin-
earizations [11, 13, 12] of the quadratic objective in (1).
Similarity invariant matching [13] solves for the optimal
permutation matrix X and linearized similarity transforma-
tion parameters θ to minimize an assignment cost and an
L1-norm linear deformation cost. Locally affine invariant
matching [12] solves for the optimal assignment X given
L1-norm barycentric coordinate preservation costs for each
node, where barycentric coordinates are locally affine in-
variant and defined in terms of neighboring graph nodes.
Both approaches use an L1-norm in the objective, and ex-
hibit linear constraints ([13] includes a linearization of the
similarity constraints) resulting in a linear programming re-
laxation.

These geometric approaches provide fast and efficient
matching, but they can suffer from ambiguity when the in-
put graph does not satisfy the assumptions of the geomet-
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ric transform model, such as cases of non-similarity trans-
formations or degenerate triangulations. Furthermore, as-
signment weights are limited to node assignment weights
only, ignoring informative assignment weights for edges
and other higher order structures [10]. Finally, these meth-
ods must discretize X to a final binary permutation matrix
for valid and invalid matches. Poor geometric alignments
with large deformation costs may still be valid (e.g. artic-
ulated objects), and good geometric alignments with small
deformations may be invalid. We would like a ”certifica-
tion” for good and bad matches to handle such ambiguity.

In this work, we focus on topology preserving graph
matching to address these observations. Topology can be
described as qualitative geometry [15], which is focused on
issues of ”connectedness” rather than metric properties. We
pose the problem of structure preserving graph matching
as topological structure preserving graph matching, where
topological structure is defined in terms of simplicial ho-
mology. Therefore, our goal is to determine an optimal as-
signment X that preserves homologies. Results from alge-
braic topology show that a chain map is a such an assign-
ment that induces a globally consistent map on homologies,
and can be used to compute global topological properties
of the final match. Basically, a valid match must preserve
topological invariants of the source graph.

The primary contributions of this work are:
1. Globally consistent matching using multiple higher

order simplexes. Simplicial homology is defined in
terms of k-simplexes, the higher dimensional analogue
of nodes and edges. Each simplex (≤ k) has an inde-
pendent weight for assignment, and constraints handle
consistency between simplexes of different dimension.

2. Match verification using topological invariants.
Topological constraints on boundary commutativity and
face intersection allow for computation of topological
invariants such as Betti number on the final assignment
X . Invalid matches do not preserve topological invari-
ants of the source graph.

3. Geometrically extensible. Any geometric method can
be augmented with the topological constraints for im-
proved performance.

4. Linear programming implementation. All topologi-
cal constraints can be posed as a constrained linear as-
signment problem satisfying boundary commutativity,
simplex face intersection and assignment constraints.

2. Homology Preserving Graph Matching
In this section, we first provide a brief introduction to

those definitions and results in simplicial homology neces-
sary to introduce the homology preserving graph matching
in section 2.3. For detailed discussion of homology and al-
gebraic topology, see [15, 19, 20].

2.1. Simplicial Homology

We begin with general definitions. Practical vision appli-
cations are typically limited to dimension ≤ 3, however we
introduce general definitions for completeness. The reader
is referred to section 2.2 for a discussion on examples and
intuition for these concepts in the context of graph theory.

Definition 2.1. A p-dimensional simplex or p-simplex is
the convex hull of p + 1 affinely independent vertices v ∈
RD

Definition 2.2. A face of a p-simplex σ is a non-empty sub-
set of vertices of σ.

Definition 2.3. A simplicial complex K is a set of simplices
that satisfies the following closure conditions
(i) Any face of a simplex in K is a simplex in K

(ii) The intersection of any two simplexes σi, σj ∈ K is a
face of both σi, σj

Let K be a finite simplicial complex of dimension p,
such that all simplexes σ ∈ K have dimension at most p.
A simplicial k-chain is a finite formal sum of k-simplices

N∑
i=1

ciσi, ci ∈ R, σi ∈ K (2)

where ci are real valued coefficients. For each k ≥ 0,
k-chains along with the addition operator form the chain
group Ck(K).

Definition 2.4. The boundary operator ∂k : Ck → Ck−1 is
a homomorphism between chain groups such that

∂k(σ) =
k∑

i=0

(−1)i⟨v0, . . . , vi−1, v̂i, vi+1, . . . , vk⟩ (3)

The notation v̂i denotes that the vertex should be dropped.
The boundary homomorphism is a linear operator and com-
mutes with addition ∂k(c1+c2) = ∂k(c1)+∂k(c2)∀c1, c2 ∈
Ck(K) Observe that ∂k(σ) =

∑
ci∂k(σi), and the bound-

ary homomorphism is a map from k-simplexes to a sum of
its (k + 1) faces.

The boundary homomorphism has a unique matrix rep-
resentation with respect to a choice of basis. Let {σi} and
{τj} be the sets of k-simplexes and (k − 1)-simplexes of
size |M − 1| and |N − 1| that represent the elementary
chain bases for Ck and Ck−1. Then, ∂k is represented as
an MxN boundary matrix with entries aij ∈ {−1, 0, 1},
such that |aij | = 1 if i ∈ τ is a face of j ∈ σ with sign
determined from (3), and zero otherwise.

Definition 2.5. The chain complex

Ck
∂k−→ Ck−1

∂k−1−−−→ Ck−2 . . . C0
∂0−→ 0



is a sequence of chain groups connected by boundary ho-
momorphisms.

The boundary homomorphism has several useful proper-
ties, which we state but do not prove [15].

Lemma 2.6. Given a boundary homomorphism ∂,

(i) The boundary of a boundary is zero, ∂k∂k+1d = 0, for
every integer k and every (k + 1)-chain d.

(ii) A k-cycle c is a k-chain with zero boundary ∂kc = 0

(iii) The boundary of every 0-simplex is zero.
(iv) The cycle group Zk = ker(∂k) = {x ∈ Ck(K) :

∂kx = 0

(v) The boundary group Bk = im(∂k+1) = {x ∈ Ck(K) :
∃ y s.t. x = ∂k+1y.

Elements of the cycle group Zk are k-chains called k-
cycles, elements of the boundary group Bk are k-chains
which called k-boundaries, which are boundaries of a (k +
1)-chain and are also cycles (Bk ⊂ Zk).

Definition 2.7. The homology group Hk(K) = Zk/Bk

is a quotient group, with elements such that {z|z = z0 +
∂k+1c, c ∈ Ck+1(K)} for a fixed representative cycle z0.

Cycles of the same homology class are homologous and de-
noted c ∼ c′.

Definition 2.8. The kth betti number

βk = rank(Hk(K)) = rank(Lk)Lk = ∂T
k ∂k + ∂k+1∂

T
k+1

is the rank of the kth homology group or equivalently the
rank of the kth combinatorial laplacian Lk [17].

Definition 2.9. A chain map Mk : K → K ′ is a homomor-
phism mapping k-simplexes of simplicial complexes K and
K ′. The chain map must satisfy boundary commutativity.

∂′
k ◦Mk = Mk−1 ◦ ∂k

This requirement follows from the requirement ∂k ◦
∂k+1 = 0. A chain map between chain complexes maps
boundaries to boundaries and cycles to cycles, and in-
duces homomorphisms between homology groups of the
two complexes [15]. This fundamental property of the chain
map is the foundation for the homology preserving graph
matching.

2.2. Discussion and Examples

The definitions for simplicial homology were introduced
in general for k-simplexes, however these concepts have
intuitive low dimensional interpretations in the context of
graph theory. Given a graph G = (V,E), a 0-simplex is
a vertex in V , a 1-simplex is an edge in E, a 2-simplex

is a triangle which forms a three node clique, a 3-simplex
as a tetrahedron or four node clique, and so on. The faces
of a edge (1-simplex) are the two incident vertex endpoints
(0-simplexes), and trivially the edge itself. The faces of a
triangle (2-simplex) are the triangle itself (trivially), three
edges (1-simplexes) and three nodes (0-simplexes).

The simplicial complex closure constraints in (2.3) states
intuitively that if two edges are incident on a common ver-
tex, then both edges must contain the vertex as a face. A 1-
chain (2) is any subset of edges, not necessarily connected.
The boundary map ∂1 (3) is the oriented node-edge inci-
dence matrix, and the boundary map ∂2 is the edge-triangle
incidence matrix. For node-edge incidence only, the combi-
natorial laplacian L = ∂1∂

T
1 = D−W , which is the classic

graph laplacian for unit weights W . Betti numbers β1 (2.3)
capture the number of ”holes” in the graph, and the homol-
ogy group H1 contains equivalence classes such that each
homology class is the set of all cycles that differ by a bound-
ary from a cycle surrounding this hole. Finally, traditional
graph matching is an estimation of M̂0, the permutation ma-
trix between graph nodes (0-simplexes) that preserves edges
(1-simplex intersections).

2.3. Constrained Linear Assignment

Homology preserving graph matching is the estimation
of chain maps Mi : Ki → K ′

i for all i ≤ p subject to
boundary commutativity, simplex intersection and assign-
ment constraints. This can be reformulated as constrained
integer linear assignment problem, which can be relaxed to
a linear programming optimization.

Given two simplicial complexes K and K ′ of dimension
p, let X = {X0, . . . , Xp} be a set of permutation matrices,
such that Xk encodes the chain map Mk. Assume that for
notational simplicity all i ≤ p, |Ki| ≤ |K ′

i|. Let Wk be
a weight matrix for the chain map Xk, such that wij is the
weight of matching σi ∈ Kk and σj ∈ K ′

k. Let W̄k =
diag(WT

k 1) be a diagonal matrix of rowsums of Wk, where
1 is vector of ones. Let boundary maps ∂ = {∂1, . . . , ∂p}
for K and ∂′ = {∂′

1, . . . , ∂
′
p} for K ′. Then, the optimal

homology preserving graph matching X∗ is the constrained
linear assignment problem:

X∗ = argmax
X0,...,Xp

p∑
k=0

tr(W̄k+1W
T
k Xk) (4)

s.t. ∀k ≤ p
∂′
kXk −Xk−1∂k = 0

xij
k ≤

∑
n x

mn
k−1 ;∀(m,n) ∈ ∂k(i)× ∂′

k(j)
1TXk = 1

XT
k 1 ≤ 1

Xk ≥ 0.

(5)

This linear program our primary contribution.



The objective (4) is a sum of the traces of the form
tr(WTX). This objective is linear in X , and can be re-
formulated to a vector x = [col(X0) . . . col(Xp)]

T by
columnwise expansion of matrices Xi, and a vector c =
[col(W0), . . . , col(Wp)]

T . Then it is clear that cTx is equiv-
alent to the objective (4). We maintain matrix unknowns for
readability, similar to [12, 13].

Lemma 2.10. tr(W̄1W
T
0 X) = ŵTx is a linear approx-

imation to the quadratic objective xTQx in (1) for ŵi =∑
j w1(i, j)w0(i).

Proof. Consider a first order Taylor series approximation

xTQx =
N∑
i=0

M∑
j=0

xiqijxj =
N∑
i=0

M∑
j=0

f(xi, xj)

f(x, y) = αxy

≃ f(a, b) + (x− a)fx(x, y) + (y − b)fy(x, y)

f(x, y) ≃ αx+ αy − α

xTQx ≃
N∑
i=0

M∑
j=0

qijxi + qijxj − qij

for x, y in the small range [0, 1]. Entries qnm in the
quadratic objective Q denote the compatibility matching
nodes (n′, n′′) and (m′,m′′). This is equivalent to the
weights in W1 which denonote the compatibility of match-
ing edges, which is defined as the compatibility of matching
pairs of nodes. Therefore,

xTQx ≃
N∑
i=0

(qi1 + qi2 + . . .+ qiM )xi

xTQx ≃ ŵTx

ŵi =
∑
j

w1(ij)w0(i)

where the weights w0 are node weights equivalent to the
on-diagonal elements of Q. We introduce this as a product
instead of a sum, however the linearization still holds.

Observe that the objective (4) is ”intertwined” with weights
from simplexes of increasing dimension, just as the bound-
ary commutativity is intertwined. We have shown this for
the dimension 0 and 1 case, but this holds by induction for
higher dimensions as well since in general simplexes σk and
σk−1 intersect in at most one face.

The constraints (5) are boundary commutativity, face in-
tersection, assignment and positivity. The notation 1 is a
vector of ones, Xk ≥ 0 denotes elementwise positivity, and
xij
k is the ijth element of Xk. The assignment constraint

1TXk = 1 requires that columns of Xk sum to one, and
that XT

k 1 ≤ 1 row sums are upper bounded by one. Since

by assumption Xk is a permutation from Kk → K ′
k and

|K| is smaller, then this assignment constraint results in a
surjection. The elementwise positivity constraint Xk ≥ 0
is a relaxation of the integer linear programming constraint
xij
k ∈ {0, 1}.

Lemma 2.11. The boundary commutativity constraint
∂′
kXk = Xk−1∂k is equivalent to the nullspace constraint

V x = 0 for V = ker(A) such that

A =

∂
′ 0 0 −B1

0
. . . 0

...
0 0 ∂′ −BM

Bi =

(∂i)
T 0 0

0
. . . 0

0 0 (∂i)
T


where ∂i is the ith column of ∂.

Proof. This follows from straightforward algebraic manip-
ulations of ∂′

kXk − Xk−1∂k = 0, vectorizing matrix Xk

columnwise and Xk−1 rowwise, then collecting terms. The
nullspace constraint results is many fewer constraints than
the corresponding equality constraints.

Lemma 2.12. If xij
k ≤

∑
n x

mn
k−1 for all (m,n) ∈

∂k(i)× ∂′
k(j) then face intersection is preserved.

Proof (sketch). If two k-simplexes (i, j) are matched, then
xij
k = 1. A k-simplex σi has k − 1 faces. The faces of σi

are ∂k(i) and the faces of σj are ∂′
k(j). We abuse notation

(∂k(i) × ∂′
k(j)) to refer to all pairwise matches of k − 1

faces of σi to k− 1 faces of σj . Each element of this subset
is (m,n) to refer to the matching of face m of σi to face n
of σj . The sum

∑
n x

mn
k−1 refers to the sum over all faces

of σj matched to one face m of σi. Therefore, there are
k − 1 constraints, one for each face m of σi, such that if
xij
k = 1 then every face of σi must match to at least one

face of σj .

Theorem 2.13. The constrained linear assignment problem
in (4) is homology preserving.

Proof (sketch). The optimal assignment X∗ is a homomor-
phism X∗ = {X0, . . . , Xk} such that Xk : K → K ′. By
the previous lemma, the optimization is closed under face
intersection, so X is a homomorphism that preserves face
intersection, and the range of X satisfies the definition of
a simplicial complex (2.3). Furthermore, by construction,
the optimization satisfies boundary commutativity. There-
fore, X∗ is a homomorphism between simplicial complexes
that exhibits boundary commutativity, and is a chain map
(2.9).

The optimization in (4) requires as inputs the weights W
and unoriented boundary maps |∂|,|∂′|, and provides out-
put X∗. For p = 1, this results in inputs ∂1 ∈ Znxm

(n nodes, m edges), ∂′
1 ∈ ZNxM (N nodes, M edges),

W0 ∈ RNxn, W1 ∈ RMxm and outputs X0 ∈ RNxn,



X1 ∈ RMxm. In the case p = 1, the total number of vari-
ables is O(Nn+Mm) and the total number of constraints
is O(Mm + Nm), where the constraints are dominanted
by the face intersection and boundary commutativity condi-
tions.

2.4. Topological Invariants

Homology preserving graph matching attempts to find a
best match that preserves homology. However, for some
matches, homology is so different that is cannot be pre-
served. In this case, we would like to have a measure for
invalid match, that is invariant to geometric deformations.

Homology preserving graph matching provides this in
the form of Betti numbers. Betti numbers are topological
invariants defined in (2.8) that are preserved under homeo-
morphisms. Given the assignment matrices Xk,Xk−1 and
Xk−2 determined from HPGM, and since HPGM is homol-
ogy preserving, observe that:

L̂k = XT
k−1∂

′T
k−1Xk−2∂k−1 +XT

k−1∂
′
kXk∂

T
k (6)

where Lk is the kth combinatorial laplacian defined in (2.8),
and L̂k is an estimated combinatorial laplacian by mapping
between simplicial complexes K → K ′ → K using the
estimated assignment matrices. If the homologies are pre-
served correctly, then this mapping through K ′ a should not
change the topological invariant, and βk = rank(Lk) =

β̂k = rank(L̂k). The dimension of the nullspace of L̂
can be determined by singular value decomposition L̂k =
UDV T , such that the rank is the number of zero singular
values of D. L̂ is positive semidefinite, and singular val-
ues will be positive. Therefore, a measure of invalid match
invariant to geometric deformations is

τ =

p∑
k=0

(σk − σ̂k)
2

where σk = diag(Dk) is a vector of the singular values of
Lk in increasing order, less than a given maximum value.
This measure can be used as a feature for classification or
used directly as a certification of valid topology preserving
matching.

2.5. Rips Complex

Vision applications of the homology preserving graph
matching requires an appropriate construction of a simpli-
cial complex from images such that homology classes cor-
respond to salient image features. In this section, we de-
scribe one such construction using a Rips complex [18] to
construct ”topologically rich” (e.g. β1 >> 0) simplicial
complex for homology class H1. This is a generalization of
the contour grouping construction of Zhu et al [22], which
we refer the reader for references.

Given an image, threshold the output of an edge detector
such as global Pb to obtain a discrete set of edgels S. The
Vietoris-Rips complex Vϵ(S) of S at scale ϵ is defined as
[18]: :

Vϵ(S) = {σ ⊆ S|d(u, v) ≤ ϵ,∀u ̸= v ∈ σ}

for Euclidean distance d. Each simplex σ ∈ Vϵ(S) has ver-
tices that are pairwise within distance ϵ. The scale parame-
ter ϵ defines a neighborhood in which nodes are connected.
The complex Vϵ(S) is a simplicial complex, of dimension
equal to the largest clique of radius ϵ in S. Given a maxi-
mum dimension d, Vϵ,d(S) ⊆ Vϵ(S) such that σ inVϵ,d(S)
has at most dimension d, which in this construction we limit
to one. Attributes for 1-simplexes are defined by the con-
struction in [22], and attributes for 0-simplexes are defined
by a local feature descriptor (such as SIFT).

An example of the Vietoris-Rips complex Vϵ(S) is
shown in figure 3. In this construction, the elements in the
homology group H1 correspond to sets of non-bounding
cycles for each dominant closed contour in an image. As
a final note, we observe that not all objects contain multi-
ple dominant closed contours. If this is the case, then Betti
numbers for these images given this construction are not a
good invariant for verification. However, consider a differ-
ent simplicial complex construction that (for example) adds
additional nodes at dominant corners, then connects these
new nodes with edges or triangles. This introduces homol-
ogy classes defined by salient contours connected by cor-
ners, and Betti numbers for this construction are likely to
be valid.

3. Experimental Results
We evaluate on a set of random graphs and on real

images for an object matching application. For all ex-
periments, we limited the maximum dimension of the
simplicial complex to p = 1, so that the constrained
linear assignment objective of (4) has the form X∗ =
argmaxX0,X1

tr(WT
1 X1) + tr(WT

0 X0), with the corre-
sponding constraints for k ≤ 1. In this form, X0 is an
assignment matrix for nodes and X1 for edges. For all ex-
periments, we create rips complexes K and K ′ using the
approach in section 2.5 for a source graph, and a target or
scene graph respectively. We construct boundary matrices
∂1 and ∂′

1 from eq. 3. We then specify a subgraph of K as an
object or model within the source. Weight matrices W0 and
W1 are defined with entries wij = exp(−(αi − αj)

2) for
edge or node attribute similarity. Finally, we run the linear
program (4) using the multithreaded MOSEK interior point
solver, and final node match is the argmax over columns of
X0 + ∂′

1X1∂1, with an experimentally set threshold for in-
valid matches. Graph matching experiments on the order of
hundreds of nodes and edges in the source matched to thou-



sands of nodes and edges in the target typically run in about
fifteen minutes on current hardware.

3.1. Random Graphs

Figure 1 shows results on matching performance for per-
turbed random graphs, comparing performance of homol-
ogy preserving graph matching (HPGM), balanced graph
matching (BGM) [6] and bipartite matching. We chose
these comparisons to show performance of HPGM against
a quadratic objective (BGM) and a linear objective without
constraints (bipartite). For all experiments, unless other-
wise stated, the graph K is constructed with |K0| = 32
nodes and β1 = 8, then perturbed according to the experi-
ment to create K ′. Examples of these homology rich graphs
are shown in the figure. Performance evaluation is mean er-
ror rate (#correct/#total) for node matching X0 vs. the
true perturbation.

First, we perturbed weights W0 and W1 by adding Gaus-
sian random noise with σ ∈ [0, 2]. Results show that HPGM
significant outperforms the others. Next, we performed
the same experiment, but on Erdos-Renyi random graphs
(β1 = 0) with edge probability p = 0.5, and results show
that even without significant non-trivial homology classes,
the HPGM still outperforms due the large number of node-
edge intersections. Next, we randomly deleted nodes from
the source graph at a constant noise level (σ = 0.5), and
we show that HPGM is approximately equivalent in per-
formance to BGM. Next, we increased Betti numbers for
a constant noise level (σ = 0.5), and showed that HPGM
decreases in error as the Betti number is increased. Next,
we randomly inserted nodes with edge probability p = 0.05
with noise level σ = 0.5 and again with noise level σ = 0.1.
This is the most critical result for subgraph matching, as this
demonstrates accuracy for subgraph matching as clutter is
added to the target. Results show that if the noise on the
weights is not too large, then matching for HPGM does not
depend on the number of nodes in the target (at least up to
2x node addition). This result highlights how important ac-
curate node and edge weights are to matching performance.

3.2. Subgraph Matching

Figure 2 shows subgraph matching results on a subset
of the affine covariant features dataset [21]. We chose this
dataset to investigate performance using a graph construc-
tion consistent with geometric graph matching results in the
literature. We constructed simplicial complexes using SIFT
keypoints and delaunay triangulation, where node attributes
are sift descriptors and edge attributes are the relative dom-
inant orientation between nodes. The matchings are sta-
ble, however results are sensitive to missing keypoints in
the target graph. These missing nodes result in a large
number of changes in edges from the Delaunay triangula-
tion, which causes the source nodes to be (correctly) not

matched. This can be seen in the third image with only two
matches. The matching is also sensitive to errors in SIFT
descriptor weights (as expected from random graph evalua-
tion), causing some nodes to be rejected such as in the wall
sequence (bottom). These experiments show that a different
graph construction is needed for robust topological invari-
ance, which motivates the Rips complex construction from
section 2.5.

Next we evaluated subgraph matching for the Rips com-
plex construction. Figure 3 shows a matching result. This
construction is less sensitive to missing nodes as additional
edges can preserve the topology, and global Pb is more
stable to viewpoint deformations. Unfortunately, the Rips
complex introduces an order of magnitude more nodes and
edges, resulting in an LP with on the ordero of millions of
constraints and variables. As a result, even for 128x128 im-
ages, the runtime for this construction is impractical (∼12
hours). While the construction looks promising, due to run-
time limitations we show only a single subgraph to sub-
graph matching result as proof of concept.

4. Conclusions
We have described an algorithm for homology preserv-

ing graph matching that provides a global topological match
between graphs. We have shown that this matching is robust
to random graph perturbations, and that it can be used for
subgraph alignment of real imagery with geometric defor-
mation. Results are promising, however more evaluations
are needed on real imagery to determine robustness. Perfor-
mance is sensitive to the graph construction, and while the
Rips complex construction results in a prohibitively large
linear program, the ”intertwined” nature of the homolo-
gies suggests an iterative approximation of this LP, where
simplexes are matched dimension by dimension, preserv-
ing homology constraints and reducing the total number of
possible matches as the dimension is increased. We leave
such extensions to future work. Finally, we observe that
the topology preserving matching can also enable new vi-
sion applications of tools from computational topology lit-
erature. Optimal homologous cycle detection [16] could be
used for part matching and persistent homology [19] can be
used for shape descriptors in clutter.
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Figure 2. Homology preserving subgraph matching using delaunay triangulation

Figure 3. Vietoris-Rips complex construction (section 2.5) (left) ϵ = 2, (middle) ϵ = 4, (right) subgraph to subgraph matching example
(ϵ = 2)


