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Abstract

In this paper, we propose a new family of binary local
feature descriptors called nested shape descriptors. These
descriptors are constructed by pooling oriented gradients
over a large geometric structure called the Hawaiian ear-
ring, which is constructed with a nested correlation struc-
ture that enables a new robust local distance function called
the nesting distance. This distance function is unique to the
nested descriptor and provides robustness to outliers from
order statistics. In this paper, we define the nested shape
descriptor family and introduce a specific member called
the seed-of-life descriptor. We perform a trade study to de-
termine optimal descriptor parameters for the task of im-
age matching. Finally, we evaluate performance compared
to state-of-the-art local feature descriptors on the VGG-
Affine image matching benchmark, showing significant per-
formance gains. Our descriptor is the first binary descriptor
to outperform SIFT on this benchmark.

1. Introduction
Local feature descriptors have emerged in the past ten

years as the dominant representation for image matching.
There exist standard benchmarks for performance evalua-
tion [11, 12, 21], and a zoo of detectors and descriptors
[1, 14, 4, 20, 8, 3, 17, 15]. introduced with the trend of
faster and faster matching while maintaining approximately
equivalent performance to SIFT [9]. Local feature descrip-
tors have been successfully deployed for a wide range of im-
age matching tasks including: stereo, optical flow, structure
from motion, egomotion estimation, tracking, geolocation
and mapping.

All existing local feature descriptors share a common
performance tradeoff between support size and matching
selectivity. It is well known that for the task of image match-
ing, descriptors constructed with larger support outperform
descriptors with smaller support [20, 8, 3, 17, 15]. Descrip-
tors with large support are constructed with larger image
patches that increase the uniqueness of a match and ad-
dress the aperture problem, however there are diminishing

Figure 1. Nested shape descriptors pool scaled and oriented gra-
dients over large geometric structures called Hawaiian earrings.
(left) Hawaiian earrings with k-fold rotational symmetry define a
member of the nested shape descriptor family called the seed-of-
life descriptor (right) Two Hawaiian earrings substructures in the
seed-of-life descriptor are highlighted in grey.

returns for constructing a descriptor too large. For example,
there may be arbitrarily large outliers in the descriptor due
to occlusions and geometric variation effects far from the
descriptor center. So, an ideal descriptor would be as large
as possible, while being robust to occlusions.

In this paper, we introduce nested shape descriptors to
address this tradeoff. A nested shape descriptor (NSD) is
a family of binary local feature descriptors constructed by
pooling oriented and scaled gradients over a large geomet-
ric structure called an Hawaiian earring. An example of the
nested shape descriptor is shown in figure 1. Each descrip-
tor has global support covering the entire image, and the
structure of the descriptor exhibits fractal self-similarity in
scale. This correlated nested structure enables new a robust
distance function called the nesting distance. The nesting
distance uses order statistics for robustness to outliers while
maintaining a descriptor with global support.

Nested shape descriptors make three primary contribu-
tions.

• Global support: Each NSD exhibits support that cov-
ers the entire image, which provides improved selec-
tivity for cases exhibiting the aperture problem without
sacrificing localization accuracy.



• Binary: NSDs are binary, which enables for compact
storage and allows the nesting distance to use a fast
Hamming distance, without sacrificing matching per-
formance.
• Robust local distance function: The nesting distance

is a quadratic local distance function that is robust to
corruption of the descriptor due to occlusions, geomet-
ric variations or lighting.

In this paper, we provide sufficient conditions for con-
struction of a nested shape descriptor using key concepts of
cumulative nested pooling and log spiral normalization. We
perform a trade study to determine optimal descriptor pa-
rameters for the task of image matching. Finally, we eval-
uate performance compared to other local feature descrip-
tors on the VGG-Affine image matching benchmark show-
ing measurable performance gains.

2. Related Work
There have been many local feature descriptors proposed

in the literature in the past ten years. From oldest to newest,
the primary developments have been: SIFT [9], PCA-SIFT
[6], Shape context [2], SURF [1], GLOH [11], Sparse lo-
calized features (SLF) [14], compressed HoG (cHoG) [4],
DAISY [23, 20], BRISK [8], BRIEF [3], ORB [17] and
FREAK [15].

The trend in local feature descriptor research has been to
show comparable performance to SIFT on the VGG-Affine
benchmark [11, 12, 21], with ever faster computation. Work
has progressed from PCA-SIFT [6] and SURF [1] which
show close performance to SIFT with lower dimension-
ality and faster preprocessing. Recent work has focused
on introducing binary features from local comparison tests
[3, 8, 17, 15] which enables fast distance metric based on
Hamming distance and faster derivatives [13]. These devel-
opments have been driven by the need for faster processing
to support mobile deployment.

A taxonomy for comparing and contrasting local feature
descriptors can be described in terms of five criteria: pre-
processing, support, pooling, normalization and descriptor
distance. Preprocessing refers to the filtering performed on
the input image, support patterns are the geometric struc-
ture used for constructing the descriptor and pooling is the
aggregation of filter responses over the support structure.
The supplementary material includes a figure which com-
pares dominant local feature descriptors according to these
criteria.

Using this taxonomy, the nested shape descriptor is most
closely related to DAISY, BRISK and FREAK. NSD has
large support and distance robust to occlusions like DAISY,
but it does not require an iterative optimization frame-
work determine occlusion masks. NSDs are binary with
large support like BRISK/FREAK, however NSD support

is larger and global relative to the image size. Further-
more, unlike BRISK and FREAK, NSD uses scaled and ori-
ented gradients comparisons rather than pixel comparisons
for computing the binary representation.

Finally, local distance functions [16] have been explored
for metric learning of exemplar distances for the task of ob-
ject recognition. However, distance functions for local fea-
ture descriptors have been limited to Euclidean, Hamming
and Mahalanobis distances, where covariance estimation is
typically used only for dimensionality reduction [6][11]. In
the taxonomy of [16], the nesting distance is per-exemplar
(“where”), online (“when”) using order statistics (“how”)
without requiring any offline training.

3. Nested Shape Descriptors
In this section, we describe the construction of nested

shape descriptors. NSD are constructed by first defining
the nested pooling structure (section 3.1), which can be
decomposed into a sets of “Hawaiian earring” structures.
We provide definitions for this construction and show how
the nested shape descriptor is constructed from these pieces
(section 3.2). Furthermore, we define the nesting distance
(section 3.4), which uses the properties of the nested de-
scriptor to provide robust distance function. Finally, we de-
fine a specific member of the nested shape descriptor family
called the seed-of-life descriptor (section 3.3), constructed
using Hawaiian earrings with k-fold rotational symmetry.

What is the intuition behind the nested descriptor? Fig-
ure 2 shows three cases that motivate the use of nesting.
The nested descriptor and nesting distance are compared
to a generic grid descriptor (e.g. SIFT, but the same argu-
ment holds for log-polar grid descriptors) for three common
scene variations: occlusions, viewpoint and scale. The red
X’s and green checkmarks show where a grid descriptor is
corrupted due to the scene variation, which leads to poor
matching performance. For these cases, the NSD and nest-
ing distance are able to select the best subset of supports
during matching to provide robustness to these scene varia-
tions. See the caption in figure 2 for a discussion.

Why the nesting distance? Given a pair of descriptors,
the nesting distance computes a weighted sum of the best
k coordinate matches. If a coordinate is an outlier (e.g. the
worst n−k coordinates, where n is the dimensionality of the
descriptor), then any inliers correlated with this outlier are
suspect, and are appropriately downweighted. The nesting
distance relies on nesting, such that all supports are linked
by exactly one point in the center of the descriptor. We
discuss further in section 3.4.

3.1. Hawaiian Earrings and Nested Pooling

Nested shape descriptors represent shape using cumu-
lative pooling of oriented gradients within Hawaiian ear-
rings. Figure 1 (right) shows an example of the Hawaiian



Figure 2. Why nesting? (left) Occlusions corrupt half of a generic grid descriptor covering the occluded region (red X’s), while the nesting
distance selects the best subset of supports in the nested descriptor that cover only the object (green checkmarks). (middle) Viewpoint
changes for long and thin foreground structures introduce errors in grid descriptor matching due to large changes in the background. The
nesting distance selects the subset of supports during matching that cover the foreground and are the correct scale to allow for background
variation. (right) Scale changes without scale invariant detectors introduce errors in grid descriptor matching due to changes in local
support. The nesting distance uses a subset of both large and small scale supports, ignoring intermediate scale supports with corruption.

earring substructure formed by a nested set of circles all
intersecting at exactly one point at the center. The Hawai-
ian earring is a nested structure analogous to Matryoshka
or Russian nesting dolls, where each smaller doll fits neatly
inside the next larger doll. Hawaiian earrings may be com-
bined into sets such that each earring is called a lobe. Each
lobe exhibits scale symmetry and all earrings intersect at
exactly one point in the center.

In the supplementary material, we formally define the
Hawaiian earrings geometric structure. The definitions pro-
vide precise construction, however this formality should not
obscure the simple intuitive nature of this descriptor. Nested
circles of exponentially increasing radius all intersect at ex-
actly one point in the center, and each circle pools oriented
gradient responses at a specific scale. Figure 1 shows this
common center point in red.

In the remaining sections, we will use the following no-
tation to reference the substructures of Hawaiian earrings.
The index Kn(u) refers to the uth of n Hawaiian earrings,
also called the uth lobe. The index K(u, v) refers to the vth

support of the Hawaiian earring Kn(u). For example, in
figure 1 (right), the two lobes highlighted in grey are Hawai-
ian earrings K6(1) and K6(4) and the two largest circles are
referenced as supports K6(1, 4) and K6(4, 4).

3.2. Nested Shape Descriptors

A nested shape descriptorD at interest point p is defined
by nested pooling, logarithmic spiral normalization and bi-
narization of oriented gradientsB over a nested support Kn.

d(i, j, k) = Σq∈K(j,k) Bik(q) (1)

d̂(i, j, k) = d(i, j, k)− d(i, j−1, k−1) (2)

D(i, j, k) =

{
1 if d̂(i, j, k) > 0

0 otherwise
(3)

Equation (1) is nested pooling. LetBrs(q) be a bandpass
response at pixel q for subband orientation r at octave scale
s [19]. The descriptor d(i, j, k) is the pooled response for
orientation subband i, lobe j and lobe scale k. Observe that
the bandpass octave scale s is equal to the Hawaiian earring
support radius k. In other words, support regions with ra-
dius 2k pool orientation subbands over octave scales k. As
the support radius increases, the pooling support contains
the next smaller support, resulting in nested pooling within
a lobe. Figure 3 (left) shows an example of this construc-
tion. Equation (1) shows sum-pooling, but we also exper-
iment with max-pooling over a support. Pooling strategies
will be defined in the experimental results section.

Equation (2) is logarithmic spiral normalization. A log-
arithmic spiral is a curve that can be written in polar coor-
dinates as r = aebθ for arbitrary positive real constants a
and b. A nested support set Kn exhibits a logarithmic spiral
when considering neighboring supports. For example, fig-
ure 3 (right) shows an example of the logarithmic spiral for
K6. Each turn of angle θi = 2π

6 i is a radius of ri = 2i,
which is equivalent to a logarithmic spiral numerically ap-
proximated with parameters a = 1, b = 0.66191. Figure
3 (right) shows a log-spiral and it’s reflection r = ae−bθ

forming an elegant flower-like pattern. This pattern encodes
the normalization which is a difference of spiral adjacent
support, which provides invariance to additive gradient bias.

Equation (3) is binarization. A nested shape descriptor
can be binarized by computing the sign of (2). This con-
structs a nested shape descriptor with binary entries.

Figure 5 shows an example of this construction. Nested



Figure 3. (top) Logarithmic spiral property of the nested shape de-
scriptor provides normalization and binarization. The log-spiral
and it’s reflection shown in grey form an elegant flower-like struc-
ture. (bottom) An NSD is formed at each interest point by (left)
nested pooling of scaled and oriented gradients and (right) log-
spiral difference and binarization.

pooling is equivalent to pooling of fixed radius over scales
of a steerable pyramid [19], which is analogous to a “flat-
tening” of a pyramid representation of scaled and oriented
gradients. The final nested shape descriptor D is a binary
vector of length (R×|K|×|K|) forR orientation bands over
|K| lobes and |K| supports per lobe. For example, for eight
orientation subbands, five nested supports, and six lobes has
dimensionality (8× 6× 5) = 240.

3.3. The Seed-of-Life Descriptor

The nested shape descriptors in section 3.2 defines a fam-
ily of descriptors that share the common properties of nested
pooling.log-spiral normalization and binarization. In this
section, we define a specific member of this family called
the seed-of-life nested shape descriptor or simply the seed-
of-life descriptor.

The seed-of-life descriptor is a nested shape descriptor
such that the nested pooling Kn is defined using a rota-
tionally symmetric geometric structure called the seed-of-
life. The seed of life is an ancient geometric symbol formed
using Hawaiian earrings with n-fold rotational symmetry.
This structure has been discovered as artistic ornamentation
in antiquity as far back as the Temple of Osiris in Egypt and
Phoenician art from the 9th century BC. It is a central fig-
ure in “sacred geometry” where it is a primitive shape used
in constructing the “flower of life” and “fruit of life”. An
example of the seed-of-life descriptor for K6 is shown in
figure 1 (left).

The seed-of-life descriptor is perhaps the simplest mem-

Figure 5. Construction of a nested shape descriptor. An NSD can
be considered a “flattening” of the steerable pyramid. Supports of
fixed sizes at different levels of the pyramid result in exponentially
increasing descriptor supports.

ber of the nested shape descriptor family since it exhibits ro-
tational symmetry where Hawaiian earring lobes are spaced
uniformly in angle. This descriptor is used for all experi-
ments in section 4.

3.4. Nesting Distance

The nesting distance is a robust quadratic local distance
function [16] unique to NSDs based on order statistics.
Given two nested descriptors p and q, the nesting distance
d(p, q) uses order statistics to partition the supports of two
nested descriptors into inliers and outliers by sorting the
squared differences up to a given maximum order k. Then,
the nesting distance is equivalent to computing the condi-
tional Gaussian distribution of inliers given outliers.

First, we introduce order statistics. Order statistics are
a partial order of a set of variables {x1, x2, . . . , xn} such
that x(1) ≤ x(k) ≤ x(n), where the kth order statistic x(k)
is equal to the kth smallest value in the set. Common or-
der statistics include the minimum x(1), maximum x(n) and
median x(n/2). To simplify notation, we introduce an n×n
binary diagonal selection matrix S(j,k) which encodes a se-
lection of all variables greater than j-order and less than
k-order.

S(j,k)(i, i) =

{
1 if x(j) ≤ xi ≤ x(k)
0 otherwise

(4)

Observe that using this notation, S(1,k) + S(k+1,n) = I ,
where I is the identity matrix. Furthermore, if all variables
are binary, then order statistics take on a simple form

x(k) =

{
1 if

∑n
i=0 xi ≥ k, xi ∈ {0, 1}

0 otherwise
(5)

which is equivalent to a thresholded Hamming distance.
The nesting distance is defined as follows. Let p and q

be two nested descriptors of length n. Consider a partition
of all squared differences (p− q)2 for a given maximum k-
order statistic. Let this partition be represented by selection



Figure 4. Example stereo image matching using the nesting distance and nested shape descriptors. Colors encode corresponding interest
points between the reference image (middle) and the observed image using the nesting distance (left) and Euclidean distance (right). The
Euclidean distance is affected by occlusions at the image boundary (left ellipse) resulting in local misalignments, while the nested distance
is more robust to these occlusion effects.

matrices of inliers S(1,k) and outliers S(k+1,n). Then, the
nesting distance d is

d(p, q,Λ, k) = (p− q)T (I −S(k+1,n))ΛS(1,k)(p− q) (6)

where Lambda is an optional quadratic weighting matrix.
If Λ is diagonal, then this simplifies

d(p, q,Λ, k) = (p− q)TΛS(1,k)(p− q) (7)

which is simply a sum of k smallest squared differences.
Furthermore, if k = n and Λ = I then the nesting distance
is equivalent to the Euclidean distance.

Lemma 3.1. If the nesting distance is of the form (6), then it
is equivalent to an unnormalized negative log likelihood of a
conditional Gaussian distribution for inliers given outliers.

Proof. We prove this property formally in the supplemen-
tal material. Informally, consider a Mahalanobis distance
xTΛx ∝ N (0,Λ) as a negative log likelihood (unnormal-
ized) of a Gaussian in canonical form. If a subset of vari-
ables are observed (e.g. outliers from order statistics), then
well known Gaussian identities can update the conditional
likelihood of the remaining variables (e.g. inliers) using the
precision matrix Λ for distance weighting.

The nesting distance was designed specifically for the
structure of the nested shape descriptor. First, recall that
there exists exactly one point at the center of the NSD that is
in all supports. Any subset of supports represents the shape
of the center pixel at some orientation and scale. Therefore,
this enables the use of order statistics to partition the sup-
ports into inliers and outliers, since all supports have one
point in common.

The nesting distance cannot be used for descriptors with
support constructed on a log-polar or Cartesian grid. Figure
2 (right) shows a simple counterexample. The majority of

the green checkmarks or “good matches” are for supports
with no variation on the background far from the center
pixel. These matches match the background, are not de-
scriptive for the corner at the center, and would be the same
if we remove the cube altogether. In contrast, all supports of
the NSD include the center pixel due to nesting, so any sub-
set of supports, including large supports, capture the shape
of the center pixel.

Figure 4 shows an example of the benefits of the nesting
distance for image matching. We extract interest points us-
ing an edge based detector, compute nested descriptors at
each point, then perform greedy minimum distance assign-
ment from the reference to the observation using either the
nesting distance or Euclidean distance. This example shows
that the nested distance is more robust to occlusions at the
image border than the Euclidean distance.

Finally, The nesting distance has two useful properties
that are proven in the supplementary material. First, the
nesting distance is non-metric, since it does not satisfy
identity or the triangle inequality properties. This property
matches perceptual experimentation as it has been long un-
derstood that perceptual distance and similarity functions
are non-metric [22]. Second, the nesting distance is robust
up to corruption of n− k coordinates.

4. Experimental Results
In this section, we provide experimental results for the

nested shape descriptor and nesting distance for the task
of image matching. First, we perform a trade study using
the new experimental protocol of similarity stereo match-
ing to determine an optimal set of descriptor parameters
for the seed-of-life descriptor. Next, we compare results
for the seed-of-life and binary seed-of-life descriptor for
the standard VGG-Affine benchmark [12] against SIFT [9]
and BRISK [8]. Finally, we show results on a challeng-



Figure 6. VGG-Affine image matching results. (top) “graf”, “bikes”, “ubc”, “boat”, (bottom) “wall”, “trees”, “leuven” and composite.
Both SOL and BSOL outperform SIFT and BRISK, and Binary-SOL is the first binary descriptor to outperform SIFT on this benchmark.

ing application for which traditional local feature descrip-
tors are not applicable. A Matlab toolbox to reproduce
these experiments is available at https://github.
com/jebyrne/seedoflife.

4.1. VGG-Affine

We show comparative performance for local feature de-
scriptor matching on the VGG-Affine benchmark [12]. This
dataset includes images of five distortion classes includ-
ing blur, viewpoint, scale/ rotation, ambient light and JPEG
compression. Each distortion class is represented by six im-
ages such that the distortion gets progressively worse, and
a ground truth homography for performance comparison of
local feature descriptors for the task of image matching.

The experimental protocol is as outlined by Mikolajczyk
and Schmid [12]. Performance evaluations for local feature
descriptors was performed using the matching score crite-
rion (feature match recall). We compare the performance of
seed-of-life (SOL) and binary SOL descriptor (section 3.3)
to SIFT [9] and BRISK [8]. The seed-of-life is identical to
the binary seed-of-life but without the final binarization step
of eq. (3). Both SOL and Binary SOL use the Euclidean
(and Hamming) distance, as we evaluate the effect of the
nesting distance separately in section 4.2. We use a dom-
inant orientation and difference of Gaussians (DoG) scale
space feature detector for SIFT and NSD, and the AGAST
detector [10] for BRISK. All parameters are defaults pro-
vided by the authors, and the parameters for NSD are deter-
mined from the trade study in section 4.3, with k = 0.7n
for nesting distance. We use the analysis tools and soft-
ware provided by [12][7][8], and we leave out “bark” for
consistency with previous work [8]. The “bark” results are

provided in the supplementary material.
Performance results are shown in figure 6. These results

show that either seed-of-life (SOL) and Binary-SOL outper-
form SIFT and BRISK for all distortion classes. Further-
more, the binary SOL and SOL descriptor perform equally,
which shows that the binarization provides a more compact
descriptor without sacrificing performance.

4.2. VGG-Affine and Local Distance Functions

Next, we performed a comparison of the nesting distance
vs. the Euclidean distance on the VGG-Affine benchmark.
This evaluation was proposed to demonstrate the relative
benefit of the nesting distance over the Euclidean distance
baseline.

Figure 7 shows the results of this study. All distor-
tion classes showed improved performance of the nesting
distance over Euclidean. Figure 7 shows matching per-
formance plots for the three distortion classes with the
largest benefit, blur (“bikes” and “trees”) and decreasing
light (“leuven”). The overall performance shows a 4.1%
improvement for the nesting distance.

4.3. Middlebury Stereo and Trade Study

In this section, we perform a trade study to determine
an optimal set of parameters for the seed-of-life descriptor.
The parameters under study were the number of orientation
bands, number of lobes, number of scales, pooling strat-
egy, and binary vs. floating point descriptor elements. We
performed a set of studies to understand the effect of these
parameters on descriptor performance for the task of image
matching.

The experimental protocol for performance evaluation is

https://github.com/jebyrne/seedoflife
https://github.com/jebyrne/seedoflife


detection rate in similarity stereo matching. We use six im-
ages from the Middlebury stereo dataset [18] (teddy, cones,
venus, tsukuba, map and sawtooth). Given a stereo pair
(I, J), ground truth disparity D and similarity transform
A, we construct a similarity stereo pair (I, J ′) such that
J ′ = A(J) by applying the similarity transform A to J .
Then, corresponding interest points (p, q) in the similarity
stereo pair (I, J ′) satisfy p = A−1q + Dp. Correspon-
dences are the composition of stereo disparity and a simi-
larity transform.

The similarity stereo matching uses the repeatability
evaluation protocol of [12] for a range of increasing simi-
larity distortions (scale=0.5-1.5, rotation=-± π

16 ). Random
similarities are sampled 10 times for each image at the de-
formation level and the mean detection rate over all six im-
ages for each deformation magnitude is shown.

Figure 8 shows the results of this study. First, we an-
alyzed the effect of the number of orientations. Increas-
ing the number of orientation subbands offers a modest im-
provement, up to diminishing returns at eight bands. Sec-
ond, we analyzed the effect of the number of lobes, and
found that increasing significantly improves performance
up to eight lobes. Third, we analyzed the effect of scales,
and found that scale is inversely correlated with deforma-
tion. For small deformations, larger scales perform bet-
ter, but for larger deformations smaller scales perform bet-
ter. This result summarizes the known tradeoff between
descriptor support and matching performance as was dis-
cussed in section 1. We selected seven scales. Fourth, we
analyzed the pooling strategy and found that sum-pooling
(e.g. orientation histograms) had a dramatic improvement
over max-pooling for image matching.

The conclusions of this study are a selection of a nomi-
nal parameter set. We use eight unsigned orientations, eight
lobes, seven scales and sum-pooling. We use these parame-
ters for all experiments in this paper.

4.4. Automated Helicopter Landing

In this section, we describe an application of the nested
shape descriptors to the problem of visual landing of a ro-
tary wing platform. Seed-of-life descriptors are used to es-
timate the position and orientation of a candidate landing
zone during approach and landing.

Visual pose estimation for landing is the problem of es-
timating the 6-DOF position and orientation of a moving
landing zone relative to a vehicle with suitable accuracy for
safe landing. Given correspondences between an observed
image and a known metric markings on the landing zone,
we can recover pose using well known techniques of robust
homography estimation and decomposition [5].

Performance results are shown in figure 9. We collected
four landing approaches of 10Hz 2456x2048 color video
and 30Hz 640x512 SWIR video of a manned helicopter ap-

Figure 9. Application of the nested shape descriptors to visual
landing zone pose estimation.

proaching a static landing zone during midday. We com-
pared the estimated landing zone position to differential
GPS ground truth and results show that the nested shape
descriptors achieve 2σ position errors in X, Y and Z of less
than 1ft during the descent and landing.

5. Conclusions
In this paper, we introduced the nested shape descrip-

tor family and the associated nesting distance, and showed
performance of the seed-of-life descriptor for the task of
image matching. Results show that this is the first binary
descriptor to outperform SIFT on the standard VGG-Affine
benchmark. Furthermore, the NSD binary descriptor sig-
nificantly outperforms BRISK, a state-of-the-art binary de-
scriptor. Future work includes exploring other members of
the NSD family such as the flower-of-life or fruit-of-life for
improved performance.
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